Answer:
c. HF can participate in hydrogen bonding.
Explanation:
<u>The boiling points of substances often reflect the strength of the </u><u>intermolecular forces</u><u> operating among the molecules.</u>
If it takes more energy to separate molecules of HF than of the rest of the hydrogen halides because HF molecules are held together by stronger intermolecular forces, then the boiling point of HF will be higher than that of all the hydrogen halides.
A particularly strong type of intermolecular attraction is called the hydrogen bond, <em>which is a special type of dipole-dipole interaction between the hydrogen atom in a polar bond</em>, such as N-H, O-H, or F-H, and an electronegative O, N, or F atom.
Answer:
stirring
Explanation:
when you stir it spreads the item out more to be fully covered and dissolve faster. like putting sugar in tea, if you don' t stir it wont dissolve fast
Answer:
2022 L
Explanation:
Ideal gas laws will work for gas in the balloon
The general gas law is for a gas at two arbitrary states 1 and 2 is given by
(P₁ V₁)/T₁ = (P₂ V₂)/T₂
P₁ = 1.17 atm
V₁ = 200.0 L
T₁ = 20°C = 293.15 K
P₂ = 63 mmHg = 0.0829 atm
V₂ = ?
T₂ = 210 K
(1.17 × 200)/293.15 = (0.0829 × V₂)/210
V₂ = (210 × 1.17 × 200)/(293.15 × 0.0829)
V₂ = 2022 L
0.20 moles of iron will be formed in the reaction.
Explanation:
The balanced chemical equation for the reaction between iron (iii) oxide and carbon monoxide to form Fe is to be known first.
the balanced reaction is :
Fe2O3 + 3CO⇒ 2 Fe + 3 CO2
so from the data given the number of moles of carbon monoxide can be known:
3 moles of CO reacted with Fe2O3 to form 2 moles of iron in the reaction.
Number of moles of CO is 6.20 moles
11.6 gm of iron is formed
so the number of moles of iron formed is calculated as
n = mass of iron ÷ atomic weight of iron
= 11.6 ÷ 55.84
= 0.20 moles of iron will be formed when 11.6 gram of iron is produced.