Yes, for example a plain is moving so it has kinetic energy, it is also high above the ground so it has gravitational potential energy
Answer:
x₂=0.44m
Explanation:
First, we calculate the length the spring is stretch when the first block is hung from it:

Now, since the stretched spring is in equilibrium, we have that the spring restoring force must be equal to the weight of the block:

Solving for the spring constant k, we get:

Next, we use the same relationship, but for the second block, to find the value of the stretched length:

Finally, we sum this to the unstretched length to obtain the length of the spring:

In words, the length of the spring when the second block is hung from it, is 0.44m.
Speeding up would make sense
Answer:
Maximum force, F = 1809.55 N
Explanation:
Given that,
Diameter of the anterior cruciate ligament, d = 4.8 mm
Radius, r = 2.4 mm
The tensile strength of the anterior cruciate ligament, 
We need to find the maximum force that could be applied to anterior cruciate ligament. We know that the unit of tensile strength is Pa. It must be a type of pressure. So,

So, the maximum force that could be applied to anterior cruciate ligament is 1809.55 N