<span>To find the acceleration we are given two facts to begin. The impact at 16 km/h and the dent of 6.4 cm, or 0.064 meters. In solving the problem uniform acceleration is assumed, which would mean the avg speed during the impact was 8 km/hr by taking 16/2. We know distance = rate*time (d=r*t) . So t = d / r, so 0.64/8 = 0.008hr for t. Now we can solve for acceleration by taking a = 16 / 0.008 = 2000 km/hr.</span>
Answer:
Buoyant force = 3.0 N
The object will not float.
Explanation:
Apparent weight of a body immersed in water is the actual weight of object minus buoyant force
Given in the question that;
Weight of object in air = 7.0 N
Apparent weight of object = 4.0 N
4.0 N = 7.0 N - Buoyant force
Buoyant force = 7.0 - 4.0 = 3.0 N
In this case, the buoyant force is less than weight of the object thus the object will sink.
Answer:
Explanation:
applied Mechanics and its Growing Utilisation of Theoretical Mechanics.\
Structural Engineering.
Hydraulics.
Mechanical Engineering.
External Fluid Dynamics.
Planetary Sciences.
Life Sciences.
Answer:
Explanation:
If the volume of a sample of gas is reduced at constant temperature, the average velocity of the molecules increases, the average force of an individual collision increases, and the average number of collisions with the wall, per unit area, per second increases.
As volume is reduced, the gas molecules come closer together, which increases the number of collisions between them and their collisions with the container walls. Also, since the distance traveled by each molecule between successive collision decreases, the molecule velocity doesn't decrease much within collisions as a result of which, the average velocity is higher compared to when the gas is stored in a larger volume. Finally, due to constant collisions, the direction of molecule travel changes rapidly owing to which the acceleration of molecules increases.
Answer:
A. 0.199 J
B. 0.0663 C
C = 0.0221 F
D. 12.68 ohms
Explanation:
From the question:
time duration, t = 0.28 seconds
Average power, P = 0.71 W
Average voltage, V = 3 V
A) Energy is given as:
E = P * t
=> E = 0.71 * 0.28 = 0.199 J
B) Electrical energy is also given as:
E = qV
where q = charge
=> q = E / V
∴ q = 0.199 / 3 = 0.0663 C
C) Capacitance is given as charge over voltage:
C = q / V
=> C = 0.0663 / 3 = 0.0221 F
D) Electrical power, P, can also be given as:
P = 
where R = resistance
=> R = 
R = 