1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergeinik [125]
3 years ago
12

When a sound wave passes from air into water, what properties of the wave will change?

Physics
1 answer:
Alja [10]3 years ago
3 0
<span>both the speed of the wave and the wavelength
- The frequency does not change, but the speed does. If that is true, then the wavelength must also change.</span>
You might be interested in
Rain and wind place which type of load on structures?
katovenus [111]
It’s a dynamic load.
Hopes this helps :)
4 0
3 years ago
Read 2 more answers
For Part A, Sebastian decided to use the copper cylinder. How would the magnitude of his q and ∆H compare if he were to redo Par
Vitek1552 [10]

The magnitudes of his q and ∆H for the copper trial would be lower than the aluminum trial.

The given parameters;

  • <em>initial temperature of metals, =  </em>T_m<em />
  • <em>initial temperature of water, = </em>T_i<em> </em>
  • <em>specific heat capacity of copper, </em>C_p<em> = 0.385 J/g.K</em>
  • <em>specific heat capacity of aluminum, </em>C_A = 0.9 J/g.K
  • <em>both metals have equal mass = m</em>

The quantity of heat transferred by each metal is calculated as follows;

Q = mcΔt

<em>For</em><em> copper metal</em><em>, the quantity of heat transferred is calculated as</em>;

Q_p = (m_wc_w + m_pc_p)(T_m - T_i)\\\\Q_p = (T_m - T_i)(m_wc_w ) + (T_m - T_i)(m_pc_p)\\\\Q_p = (T_m - T_i)(m_wc_w ) + 0.385m_p(T_m - T_i)\\\\m_p = m\\\\Q_p = (T_m - T_i)(m_wc_w ) + 0.385m(T_m - T_i)\\\\let \ (T_m - T_i)(m_wc_w )  = Q_i, \ \ \ and \ let \ (T_m- T_i) = \Delta t\\\\Q_p = Q_i + 0.385m\Delta t

<em>The </em><em>change</em><em> in </em><em>heat </em><em>energy for </em><em>copper metal</em>;

\Delta H = Q_p - Q_i\\\\\Delta H = (Q_i + 0.385m \Delta t) - Q_i\\\\\Delta H = 0.385 m \Delta t

<em>For </em><em>aluminum metal</em><em>, the quantity of heat transferred is calculated as</em>;

Q_A = (m_wc_w + m_Ac_A)(T_m - T_i)\\\\Q_A = (T_m -T_i)(m_wc_w) + (T_m -T_i) (m_Ac_A)\\\\let \ (T_m -T_i)(m_wc_w)  = Q_i, \ and \ let (T_m - T_i) = \Delta t\\\\Q_A = Q_i \ + \ m_Ac_A\Delta t\\\\m_A = m\\\\Q_A = Q_i \ + \ 0.9m\Delta t

<em>The </em><em>change</em><em> in </em><em>heat </em><em>energy for </em><em>aluminum metal </em><em>;</em>

\Delta H = Q_A - Q_i\\\\\Delta H = (Q_i + 0.9m\Delta t) - Q_i\\\\\Delta H = 0.9m\Delta t

Thus, we can conclude that the magnitudes of his q and ∆H for the copper trial would be lower than the aluminum trial.

Learn more here:brainly.com/question/15345295

6 0
3 years ago
When air transfers energy to a cooler object what happens to the air temperature?
tensa zangetsu [6.8K]

The answer is: It decreases.

4 0
3 years ago
Read 2 more answers
Consider a heat engine that inputs 10 kJ of heat and outputs 5 kJ of work. What are the signs on the total heat transfer and tot
Oksi-84 [34.3K]

Answer:

Total heat transfer is positive

Total work transfer is positive

Explanation:

The first law of thermodynamics states that when a system interacts with its surrounding, the amount of energy gained by the system must be equal to the amount of energy lost by the surrounding. In a closed system, exchange of energy with the surrounding can be done through heat and work transfer.

Heat transfer to a system is positive and that transferred from the system is negative.

Also, work done by a system is positive while the work done on the system is negative.

Therefore, from the question, since the heat engine inputs 10kJ of heat, then heat is being transferred to the system. Hence, the sign of the total heat transfer is positive (+ve)

Also, since the heat engine outputs 5kJ of work, it implies that work is being done by the system. Hence the sign of the total work transfer is also positive (+ve).

5 0
3 years ago
Positive charge Q is placed on a conducting spherical shell with inner radius R1 and outer radius R2. A particle with charge q i
sergejj [24]

Answer: in this question, the only charge in the cavity is Q. Inside the conducting spherical shell, the electric field is zero.

While outside the shell, the electric field is given by: k(q + Q)/r²

Where;

K= is a constant which is given as, 8.99 x 10^9 N m² / C².

Q= source charge which creates the electric field

q= is the test charge which is used to measure the strength of the electric field at a given location.

r= is the radius

Explanation: Inside the conducting spherical shell, the electric field is zero since the Electric field vanishes everywhere inside the volume of a good conductor.

8 0
3 years ago
Other questions:
  • Suppose you start an antique car by exerting a force of 258 N on its crank for 0.270 s. What angular momentum is given to the en
    8·1 answer
  • After completing a career search, Patrick has decided that he wants to be a paralegal. Which two skills or abilities are importa
    15·2 answers
  • When a hot and cold object are placed in contact, the hot one loses energy. Does this violate energy conservation? Why or why no
    6·1 answer
  • During the first 5 seconds of a rocket launch, the momentum of the rocket increased by 10,000 kg m/s. What was the impulse appli
    10·1 answer
  • You throw a Frisbee of mass m and radius r so that it is spinning about a horizontal axis perpendicular to the plane of the Fris
    11·1 answer
  • Which Olympic events the most muscular stretch
    10·1 answer
  • Help please
    11·1 answer
  • According to the Law of Universal Gravitation, which scenario would generate the most
    15·1 answer
  • How does the centre of gravity vary with different objects?​
    12·1 answer
  • A bullet is shot vertically upward with an initial velocity of 128 ft/s. The bullet's height after t seconds is y(t) = 128t - 16
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!