5. is b
but im not sure about 4
hope this helps
Answer: The ratio of the number of oxygen molecules to the number of nitrogen molecules in these flasks is 1: 1
Explanation:
According to avogadro's law, equal volumes of all gases at same temperature and pressure have equal number of moles.
According to avogadro's law, 1 mole of every substance contains avogadro's number
of particles.
Thus as oxygen and nitrogen are at same temperature and pressure and are in equal volume flasks , they have same number of moles and thus have same number of molecules.
The ratio of the number of oxygen molecules to the number of nitrogen molecules in these flasks is 1: 1
Answer:
Kb = [CH₃NH₃⁺] × [OH⁻] / [CH₃NH₂]
Explanation:
According to Brönsted-Lowry acid-base theory:
- An acid is a substance that donates H⁺.
- A base is a substance that accepts H⁺.
When methylamine reacts with water, it behaves as a Brönsted-Lowry base, according to the following reaction.
CH₃NH₂(aq) + H₂O(l) ⇄ CH₃NH₃⁺(aq) + OH⁻(aq)
The basic equilibrium constant (Kb) is:
Kb = [CH₃NH₃⁺] × [OH⁻] / [CH₃NH₂]
Answer:
Hshsshjsiiiiwwwuauuauw2ywywwywi
<u>Answer:</u> The energy released in the given nuclear reaction is 1.3106 MeV.
<u>Explanation:</u>
For the given nuclear reaction:

We are given:
Mass of
= 39.963998 u
Mass of
= 39.962591 u
To calculate the mass defect, we use the equation:

Putting values in above equation, we get:

To calculate the energy released, we use the equation:

(Conversion factor:
)

Hence, the energy released in the given nuclear reaction is 1.3106 MeV.