1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Svetllana [295]
3 years ago
13

Water at 310 K and a flow rate of 4 kg/s enters an alumina tube (k=177Wm K1) with an inner diameter of 0.20 m and a wall thickne

ss of 0.02 m. Air at a temperature of 390 K flows over the tube, heating it. The convection coefficients of for the water and air are 150 and 30 W m2 K-1, respectively.

Engineering
1 answer:
nata0808 [166]3 years ago
3 0

Answer:

Please find the attached graph of temperature as a function of tube length

Explanation:

The given information are;

The temperature of the air = 310 K

The mass flow rate = 4 kg/s

k = 177 WmK1

The inner diameter of the tube = 0.20 m

The tube wall thickness = 0.02 m

The convection coefficients of the water = 150 W·m²/k

The convection coefficients of the water = 30 W·m²/k

The area of the tube = π×0.2^2/4 = 0.03142 m²

The density = 1000 kg.m³

The mass flow rate = 4 kg/s

U_m = \dfrac{\dot m}{\rho \cdot A_c} =  \dfrac{4}{ 1000 \times 0.03142} = 0.127 \ m/s

Re_{D} = \dfrac{\rho \times u_m \times D}{\mu} =  \dfrac{1000 \ kg/m^3 \times 0.127 \ m/s \times 0.2 \ m}{8.01 \times 10^{-4}\  N \cdot S/m^2} = 31,791.25

The Reynolds number is > 2300 for pipe therefore, we have turbulent flow, and the entry length is estimated at 10 pipe diameters

The Nusselt number, Nu = h*D/k = 0.023*31791.25^(0.8)*4.32^(0.4) = 165.11

The total resistance = R_{tot}=R_{conv, i} + R_{conv, i} + R_{tube}

R_{conv, i} + R_{conv, i} = (1/150*(1/(0.2)) + 1/30*(1/(0.22)))/π = 0.059 K/W  

Resistance of tube, R_{tube}  = \dfrac{ln(r_2/r_1}{2\cdot \pi \cdot k}  = \dfrac{ln(0.12/0.1)}{2\times\pi \times 177} = 1.64 \times 10^{-4} \ K/W

R_{tot} = 0.059 + 1.64 × 10⁻⁴ = 0.059 K/W

The heat transfer \dot Q = \dfrac{t_A - t_B}{R_{tot}}

\dot Q = (390 - 310)/0.059 = 1355.99 W ≈ 1356 W

Given that the water velocity = 0.127 m/s, we have;

Time to make one meter = 1/0.127 = 7.874 seconds

Mass of water that will have flowed in 7.874 seconds = 4×7.874 = 31.496 kg

The heat transferred in 7.874 seconds = 1356 × 7.874 = 10677.144 J

The specific heat capacity of water = 4,200 J/(kg·°C)

Therefore for one meter, we have;

10677.144 = 4,200 ×31.496 × (t_B - 310)

(t_B - 310) = 10677.144 /(4,200 *31.496) =

t_B  =0.0807 + 310 = 310.0807 K

At  two meters, we have;

2*10677.144 = 2*4,200 *31.496 × (t_B - 310)

(t_B - 310.0807 ) = 2*10677.144 /( 2*4,200 *31.496 )

t_B  =0.0807 + 310.0807 = 310.1614

At three meters, we have

0.0807 + 310.0807 = 310.1614

The other values are;

m,          T

1,           310.0807143

2,          310.1614286

3,          310.2421429

4,          310.3228571

5,          310.4035714

6,          310.4842857

7,           310.565

8,           310.6457143

Which gives the attached  graph

You might be interested in
Select the correct answer.
cricket20 [7]

Answer:

A.

The power generated by a wind farm is not constant because of irregular wind patterns.

5 0
3 years ago
A well-insulated, rigid tank has a volume of 1 m3and is initially evacuated. A valve is opened,and the surrounding air enters at
DiKsa [7]

Answer:

0.5 kW

Explanation:

The given parameters are;

Volume of tank = 1 m³

Pressure of air entering tank = 1 bar

Temperature of air = 27°C = 300.15 K

Temperature after heating  = 477 °C = 750.15 K

V₂ = 1 m³

P₁V₁/T₁ = P₂V₂/T₂

P₁ = P₂

V₁ = T₁×V₂/T₂ = 300.15 * 1 /750.15 = 0.4 m³

dQ = m \times c_p \times (T_2 -T_1)

For ideal gas, c_p = 5/2×R = 5/2*0.287 = 0.7175 kJ

PV = NKT

N = PV/(KT) = 100000×1/(750.15×1.38×10⁻²³)

N = 9.66×10²⁴

Number of moles of air = 9.66×10²⁴/(6.02×10²³) = 16.05 moles

The average mass of one mole of air = 28.8 g

Therefore, the total mass = 28.8*16.05 = 462.135 g = 0.46 kg

∴ dQ = 0.46*0.7175*(750.15 - 300.15) = 149.211 kJ

The power input required = The rate of heat transfer = 149.211/(60*5)

The power input required = 0.49737 kW ≈ 0.5 kW.

3 0
3 years ago
Write an application that solicits and inputs three integers from the user and then displays the sum, average, product, smallest
Ganezh [65]

Answer:

3423=6^H

Explanation:

6 0
3 years ago
Discoloration on walls, work surfaces, ceilings, walls, and pipes may indicate a leak that is causing you to waste raw materials
suter [353]

Answer:

True :)

Explanation:

If this is a true or false question.

6 0
2 years ago
A 2-m3insulated rigid tank contains 3.2 kg of carbon dioxide at 120 kPa.Paddle-wheel work is done on the system until the pressu
AleksandrR [38]

Answer:

The change in entropy is found to be 0.85244 KJ/k

Explanation:

In order to solve this question, we first need to find the ration of temperature for both state 1 and state 2. For that, we can use Charles' law. Because the volume of the tank is constant.

P1/T1 = P2/T2

T2/T1 = P2/P1

T2/T1 = 180 KPa/120KPa

T2/T1 = 1.5

Now, the change in entropy is given as:

ΔS = m(s2 - s1)

where,

s2 = Cv ln(T2/T1)

s1 = R ln(V2/V1)

ΔS = change in entropy

m = mass of CO2 = 3.2 kg

Therefore,

ΔS = m[Cv ln(T2/T1) - R ln(V2/V1)]

Since, V1 = V2, therefore,

ΔS = mCv ln(T2/T1)

Cv at 300 k for carbondioxide is 0.657 KJ/Kg.K

Therefore,

ΔS = (3.2 kg)(0.657 KJ/kg.k) ln(1.5)

<u>ΔS = 0.85244 KJ/k</u>

3 0
3 years ago
Other questions:
  • To be able to write an ss-domain equation for a circuit, use partial fraction decomposition to separate the terms in this equati
    12·1 answer
  • A process engineer performed jar tests for a water in order to determine the optimal pH and dose using alum. A test was conducte
    13·1 answer
  • Engineering Questions
    15·2 answers
  • With a brief description, What are the 14 principles of management by fayol.​
    10·1 answer
  • Consider two Carnot heat engines operating in series. The first engine receives heat from the reservoir at 1400 K and rejects th
    6·1 answer
  • An engineer is trying to build a new measurement tool. Which step should the engineer complete first? A. Design a model of the t
    8·1 answer
  • The use of zeroes after a decimal point are an indicator of accuracy. a)True b)- False
    7·1 answer
  • You must yield the right-of-way to all of the following EXCEPT:
    8·1 answer
  • Disconnecting a circuit while in operation can create a voltage blank
    15·1 answer
  • Write down about the water source selection criteria​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!