Answer:
In the table, 1=46.7 °C, 1=165 J, 2=819 J, 3=1510 J, and 4=2830 J.
Other experiments determine that the material has a temperature of fusion of
fusion =235 °C and a temperature of vaporization of vapor=481 °C.
If the sample of material has a mass of =8.60 g, calculate the specific heat when this material is a solid, and when it is liquid, l
Answer:
v = 15.65 m/s
Explanation:
We use conservation of mechanical energy between initial (i) and final (f) states:
Pi + KEi = Pf + KEf
At the top of the cave at the instant the bat starts to fall, there is only potential energy since the bat's velocity is zero.
Pi = m g h = 600 J
and the KEi = 0 J (no velocity)
Knowing the height of the cave's roof (12.8 m) , we can find the mass of the bat:
m = 600 J / (g 12.5) = 4.9 kg
Using conservation of mechanical energy, the final state is:
Pf + KEf = 600 J
with Pf = 0 (just touching the ground)
KEf= 1/2 4.9 (v^2)
and we solve for the velocity:
600 J = 0 + 1/2 4.9 (v^2)
v^2 = 600 * 2 / 4.9 = 244.9
v = 15.65 m/s
Answer: b) pointed toward and parallel to the member.
Explanation:
It is shown in the picture attached
'The principle of superposition states that when two disturbance occupy the same space at the same time the resulting disturbance is the sum of two disturbances.'
Explanation:
if two pulses are moving towards each other in the same medium and are not disturb by any external force they will approach each other and the point which will be the the sum of their individual displacement or more precisely the point of superposition of both pulses either constructive or destructive depending on the conditions given