Momentum of car
Given: Mass m= 1,400 Kg; V = 6.0 m/s
Formula: P = mv
P = (1,400 Kg)(6.0 m/s)
P = 8,400 Kg.m/s
Velocity of the rider to have the same momentum as a car.
Mass of rider and bicycle m = 100 Kg
P = mv
V = P/m
V = 8,400 Kg.m/s/100 Kg
V = 84 m/s
Answer:
Plato, Aristotle developed it further and used for 1400 years till Copernicus.
Explanation:
Answer: conduction :it transfers heat between objects that are in direct contact with eachother
Hello!
We can use the following equation for calculating power dissipated by a resistor:

P = Power (? W)
i = Current through resistor (2.0 A)
R = Resistance of resistor (50Ω)
Plug in the known values and solve.

Answer:
horizontal component of normal force is equal to the centripetal force on the car
Explanation:
As the car is moving with uniform speed in circle then the force required to move in the circle is towards the center of the circle
This force is due to friction force when car is moving in circle with uniform speed
Now it is given that car is moving on the ice surface such that the friction force is zero now
so here we can say that centripetal force is due to component of the normal force which is due to banked road
Now we have


so we have

so this is horizontal component of normal force is equal to the centripetal force on the car