Answer:
intensity.
Explanation:
when the light collected by the lens is focused into a small spot it tends to increase the intensity of the light.
as different path of light with different intensity combines from passing through the lens it tends to make the light path and intensity coherent and after being coherent there intensity increases.
Answer:
I = 0.09[amp] or 90 [milliamps]
Explanation:
To solve this problem we must use ohm's law, which tells us that the voltage is equal to the product of the voltage by the current.
V = I*R
where:
V = voltage [V]
I = current [amp]
R = resistance [ohm]
Now, we replace the values of the first current into the equation
V = 180*10^-3 * R
V = 0.18*R (1)
Then we have that the resistance is doubled so we have this new equation:
V = I*(2R) (2)
The voltage remains constant therefore 1 and 2 are equals and we can obtain the current value.
V = V
0.18*R = I*2*R
I = 0.09[amp] or 90 [milliamps]
It could rotate while not advancing distance
It will land in your lap because there's different frames of motion relative to yourself. For example, if you're running at a speed of 6 mph, it doesn't mean you'll run as fast as the Earth spins. Also, since you're on the interior of the plane, any kind of wind or weather on the outside will not affect the coin. A law to back up this claim is Einsteins Special Law of Relativity.
<h2>
Option A is the correct answer.</h2>
Explanation:
Acceleration due to gravity

G = 6.67 × 10⁻¹¹ m² kg⁻¹ s⁻²
Let mass of earth be M and radius of earth be r.
We have

Now
A hypothetical planet has a mass of one-half that of the earth and a radius of twice that of the earth.
Mass of hypothetical planet, M' = M/2
Radius of hypothetical planet, r' = 2r
Substituting

Option A is the correct answer.