Answer:
The possible frequencies for the A string of the other violinist is 457 Hz and 467 Hz.
(3) and (4) is correct option.
Explanation:
Given that,
Beat frequency f = 5.0 Hz
Frequency f'= 462 Hz
We need to calculate the possible frequencies for the A string of the other violinist
Using formula of frequency
...(I)
...(II)
Where, f= beat frequency
f₁ = frequency
Put the value in both equations


Hence, The possible frequencies for the A string of the other violinist is 467 Hz and 457 Hz.
The force between the spheres increases when the mass increases in one of the spheres.
<u>Explanation:</u>
Newton law of universal gravity extends gravity beyond the earth's surface. This gravity depends directly on the mass of both objects and is inversely proportional to square of distance between their centers.

Since gravity is directly proportional to “mass of both interacting objects”, stronger objects with greater gravitational force attract. If the mass of one object increases, gravity between them also increases. For example, if an object's mass of one double, force between them also doubles.
If a man pushes on a wall with some force then according to Newton's third law, wall will also apply force on man with same magnitude but opposite in direction.
Answer:
Velocity
Explanation:
<u>Velocity</u> is the rate that an object moves in certain direction.