1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sveta [45]
3 years ago
8

A circuit with two or more branches for current to flow

Physics
1 answer:
Natalija [7]3 years ago
4 0

If there's any point in a circuit where the current has a choice
of which branch to take, then you have a <em>parallel circuit</em>.


You might be interested in
The moon has a weaker gravitational force than earth. sofia weighs 50 lbs. on earth. how much will she weigh on the moon?
kupik [55]
If Sofia weighs 50 lbs on Earth, then she would weigh 8.3 lbs, because you are 6 times lighter on the moon than you are on Earth!
3 0
3 years ago
Which statements accurately describe mechanical waves? Check all that apply.
kotegsom [21]

Answer:

A

Explanation:

E. An ocean wave moving through water is an example of a mechanical wave

e.g sound waves wave on a rope or string

and Ans a is also correct

4 0
2 years ago
collision occurs betweena 2 kg particle traveling with velocity and a 4 kg particle traveling with velocity. what is the magnitu
anzhelika [568]

Answer:

metre per seconds

Explanation:

because velocity = distance ÷ time

4 0
4 years ago
I need help for the first 3 plz.
madam [21]
1) hypothesis
2) data
3) method

I think these are correct.
7 0
3 years ago
Read 2 more answers
An insect 5.25 mm tall is placed 25.0 cm to the left of a thin planoconvex lens. The left surface of this lens is flat, the righ
Zigmanuir [339]

Answer:

(A) therefore the image is

  • 63 cm to the right of the lens
  • the image size is -13.22 cm
  • it is real
  • it is inverted

(B) therefore the image is

  • 63 cm to the right of the lens
  • the image size is -13.22 cm
  • it is real
  • it is inverted

Explanation:

height of the insect (h) = 5.25 mm = 0.525 cm

distance of the insect (s) = 25 cm

radius of curvature of the flat left surface (R1) = ∞

radius of curvature of the right surface (R2) = -12.5 cm (because it is a planoconvex lens with the radius in the direction of the incident rays)

index of refraction (n) = 1.7

(A) we can find the location of the image by applying the formula below

\frac{1}{f} =\frac{1}{s'} +\frac{1}{s} where

  • s' = distance of the image
  • f = focal length
  • but we first need to find the focal length before we can apply this formula

\frac{1}{f} =(n-1)(\frac{1}{R1} -\frac{1}{R2} )

\frac{1}{f} =(1.7-1)(\frac{1}{∞} -\frac{1}{-12.5} )

\frac{1}{f} =(0.7)(0 + \frac{1}{12.5} )

\frac{1}{f} =\frac{0.7}{12.5}

f = \frac{12.5}{0.7}

f = 17.9 cm

now that we have the focal length we can apply \frac{1}{f} =\frac{1}{s'} +\frac{1}{s}

\frac{1}{f} - \frac{1}{s} =\frac{1}{s'}

\frac{1}{17.9} - \frac{1}{25} =\frac{1}{s'}

\frac{25 - 17.9}{17.9 x 25} =\frac{1}{s'}

\frac{7.1}{447.5} =\frac{1}{s'}

s' = \frac{447.5}{7.1}[/tex]  = 63 cm to the right of the lens

magnification =\frac{-s'}{s} =\frac{y'}{y}   where y' is the height of the image, therefore

\frac{-s'}{s} =\frac{y'}{y}

\frac{-63}{25} =\frac{y'}{52.5}

y' = \frac{-63}{25} x 0.525 = -13.22 cm

therefore the image is

  • 63 cm to the right of the lens
  • the image size is -13.22 cm
  • it is real
  • it is inverted

(B) if the lens is reversed, the radius of curvatures would be interchanged

radius of curvature of the flat left surface (R1) = ∞

radius of curvature of the right surface (R2) = 12.5 cm

we can find the location of the image by applying the formula below

\frac{1}{f} =\frac{1}{s'} +\frac{1}{s} where

  • s' = distance of the image
  • f = focal length
  • but we first need to find the focal length before we can apply this formula

\frac{1}{f} =(n-1)(\frac{1}{R1} -\frac{1}{R2} )

\frac{1}{f} =(1.7-1)(\frac{1}{12.5} -\frac{1}{∞} )

\frac{1}{f} =(0.7)( \frac{1}{12.5} - 0)

\frac{1}{f} =\frac{0.7}{12.5}

f = \frac{12.5}{0.7}

f = 17.9 cm

now that we have the focal length we can apply \frac{1}{f} =\frac{1}{s'} +\frac{1}{s}

\frac{1}{f} - \frac{1}{s} =\frac{1}{s'}

\frac{1}{17.9} - \frac{1}{25} =\frac{1}{s'}

\frac{25 - 17.9}{17.9 x 25} =\frac{1}{s'}

\frac{7.1}{447.5} =\frac{1}{s'}

s' = \frac{447.5}{7.1}[/tex]  = 63 cm to the right of the lens

magnification =\frac{-s'}{s} =\frac{y'}{y}   where y' is the height of the image, therefore

\frac{-s'}{s} =\frac{y'}{y}

\frac{-63}{25} =\frac{y'}{52.5}

y' = \frac{-63}{25} x 0.525 = -13.22 cm

therefore the image is

  • 63 cm to the right of the lens
  • the image size is -13.22 cm
  • it is real
  • it is inverted

7 0
3 years ago
Other questions:
  • For several reasons you should only use hospital aproved lotions two of the reasons are because they cause breakdown of latex gl
    6·1 answer
  • If I push a box at a constant rate is there friction force acting on it?
    14·1 answer
  • What can help a scientist identify any object in a group of objects?
    8·2 answers
  • Which statement describes the direction of spontaneous heat flow
    9·2 answers
  • A train travels 600 km in one hour. What is the trains velocity in meters/second
    5·2 answers
  • A black hole can be considered a star that has...
    8·1 answer
  • What does it mean when wave
    10·1 answer
  • Determine the speed of sound on a cold winter day (Temperature = 3ºC). *
    11·1 answer
  • On clear day, sunlight delivers approximately 1000 J each second to a 1 m2 surface; smaller areas receive proportionally less--h
    14·1 answer
  • A living thing that feeds on Another living thing and may kill it eventually is called
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!