Answer:
The new time period is
Explanation:
From the question we are told that
The period of oscillation is
The new length is
Let assume the original length was
Generally the time period is mathematically represented as
Now I is the moment of inertia of the stick which is mathematically represented as
So
Looking at the above equation we see that
=>
=>
=>
I'm not sure about the magnitude, but the direction of the normal force is upward.
Answers:
a) -171.402 m/s
b) 17.49 s
c) 1700.99 m
Explanation:
We can solve this problem with the following equations:
(1)
(2)
(3)
Where:
is the bomb's final jeight
is the bomb'e initial height
is the bomb's initial vertical velocity, since the airplane was moving horizontally
is the time
is the acceleration due gravity
is the bomb's range
is the bomb's initial horizontal velocity
is the bomb's fina velocity
Knowing this, let's begin with the answers:
<h3>b) Time</h3>
With the conditions given above, equation (1) is now written as:
(4)
Isolating :
(5)
(6)
(7)
<h3>a) Final velocity</h3>
Since , equation (3) is written as:
(8)
(9)
(10) The negative sign ony indicates the direction is downwards
<h3>c) Range</h3>
Substituting (7) in (2):
(11)
(12)
Answer:
Decreases by times
Explanation:
The intensity of a sound is defined as the energy of the sound that is flowing in an unit time through the unit area which is in the direction that is perpendicular to the direction of the sound waves movement.
The intensity of energy is described by the inverse square law. It states that the intensity varies inversely with the distance square of the distance.
In other words, the sound intensity decreases as inversely proportional to the squared of the distance. i.e.
In the context when the distance was 3 m, the intensity of the sound was =
But when the distance became 6 cm or 0.06 m, the sound intensity decreases by =
= times
<span>The use of the word on instead of the word in when referring to the angular distance between celestial objects comes about because all of the objects appear to be on the celestial sphere and at an indeterminable distance. While we know that objects are at different distances in the sky, their distance from Earth is irrelevant in determining the angular distance between the two objects as viewed from Earth.</span>