A. freezing, when water turns to ice the water is turning from a liquid to a solid.
The magnitude of your displacement can be equal to the distance you covered, or it can be less than the distance you covered. But it can never be greater than the distance you covered.
This is because displacement is a straight line, whereas distance can be a straight line, a squiggly line, a zig-zag line, a line with loops in it, a line with a bunch of back-and-forths in it, or any other kind of line.
The straight line is always the shortest path between two points.
Answer:
23.889 Celcius
Explanation:
(75°F − 32) × 5/9 = 23.889°C
Answer:
0.786 Hz, 1.572 Hz, 2.358 Hz, 3.144 Hz
Explanation:
The fundamental frequency of a standing wave on a string is given by

where
L is the length of the string
T is the tension in the string
is the mass per unit length
For the string in the problem,
L = 30.0 m

T = 20.0 N
Substituting into the equation, we find the fundamental frequency:

The next frequencies (harmonics) are given by

with n being an integer number and f being the fundamental frequency.
So we get:



Answer:
c. 48 cm/s/s
Explanation:
Anna Litical and Noah Formula are experimenting with the effect of mass and net force upon the acceleration of a lab cart. They determine that a net force of F causes a cart with a mass of M to accelerate at 48 cm/s/s. What is the acceleration value of a cart with a mass of 2M when acted upon by a net force of 2F?
from newtons second law of motion ,
which states that change in momentum is directly proportional to the force applied.
we can say that
f=m(v-u)/t
a=acceleration
t=time
v=final velocity
u=initial velocity
since a=(v-u)/t
f=m*a
force applied is F
m =mass of the object involved
a is the acceleration of the object involved
f=m*48.........................1
in the second case ;a mass of 2M when acted upon by a net force of 2F
f=ma
a=2F/2M
substituting equation 1
a=2(M*48)/2M
a=. 48 cm/s/s