Given: C3H8(g) + O2(g) ----> CO2 (g) + H2O (g)
Step : Put a 3 in front of CO2 (g) to balance C
=> C3H8(g) + O2(g) ----> 3CO2 + H2O to balance H
Step 2: Put a 4 in front of H2O
=> C3H8 (g) + O2(g) -----> 3CO2 (g) + 4H2O (g)
Step 3: Given that there are 3*2 + 4 = 10 O to the right side, put a 5 in front of O2 to balance O:
=> C3H8(g) + 5O2(g) -----> 3CO2(g) + 4H2O(g)
You can verify that the equation is balanced.
So, the answer is that the coefficient in front of O2 is 5.
This problem is to use the Claussius-Clapeyron Equation, which is:
ln [p2 / p1] = ΔH/R [1/T2 - 1/T1]
Where p2 and p1 and vapor pressure at estates 2 and 1
ΔH is the enthalpy of vaporization
R is the universal constant of gases = 8.314 J / mol*K
T2 and T1 are the temperatures at the estates 2 and 1.
The normal boiling point => 1 atm (the pressure of the atmosphere at sea level) = 101,325 kPa
Then p2 = 101.325 kPa
T2 = ?
p1 = 54.0 kPa
T1 = 57.8 °C + 273.15K = 330.95 K
ΔH = 33.05 kJ/mol = 33,050 J/mol
=> ln [101.325/54.0] = [ (33,050 J/mol) / (8.314 J/mol*K) ] * [1/x - 1/330.95]
=> 0.629349 = 3975.22 [1/x - 1/330.95] = > 1/x = 0.000157 + 1/330.95 = 0.003179
=> x = 314.6 K => 314.6 - 273.15 = 41.5°C
Answer: 41.5 °C
Answer:
a solution color becoming less intense due to dilution- is not an evidence of a chemical reaction
bubbles (gas formation) - evidence of a chemical reaction
explosion or fire - evidence of a chemical reaction
changes in color- evidence of a chemical reaction
precipitation- evidence of a chemical reaction
changes in temperature - evidence of a chemical reaction
a solid liquifying - is not an evidence of a chemical reaction
solution colors mixing - is not an evidence of a chemical reaction
Explanation:
A chemical change is not easily reversible and yields new substances. It is often accompanied by a loss or gain of heat.
In the answer section, i have shown some evidences that lead us to conclude that a chemical reaction has taken place. The occurrence of a chemical change often goes with the formation of new substances as earlier stated and any of these signs may accompany the process.
For instance, when a metal is dropped in dilute acid solution, bubble of hydrogen gas indicates that a chemical reaction has taken place.
Answer:
Explanation:
Scientists know that there are 6x1023 molecules in a mole - so we have about 0.5x1023 molecules in our marble…and since every silicon dioxide molecule has one atom of silicon and two of oxygen, we have a grand total of 1.5x1023 atoms. That's 150,000,000,000,000,000,000,000 atoms
Mass of Cl₂ : 164.01 g
<h3>Further explanation</h3>
A mole is a number of particles(atoms, molecules, ions) in a substance
This refers to the atomic total of the 12 gr C-12 which is equal to 6.02.10²³, so 1 mole = 6.02.10²³ particles
Can be formulated :
N = n x No
N = number of particles
n = mol
No = 6.02.10²³ = Avogadro's number
mol Cl₂ :
mass Cl₂(MW=71 g/mol) :