Answer:
All elements in the same A group will have the same number of
valence electrons.
Explanation:
Group A has 1 valence electrons.
Answer:
Atoms are often more stable when bonded to other atoms
Explanation:
Like for example let's say ionic bonds..... Since one atom has to lose specific electrons to be stable and the other needs the electrons from the other atom to be stable.....
Answer:
See explaination
Explanation:
Going by the clues that it is between Silver Flouride (AgF) and Sodium Fluoride (NaF) and since it is an aqueous solution , the 1 liter bottle is likely to be Sodium Chloride( NaCl). Going by the reaction,
AgF + NaCl= AgCl + NaF
Here, the color of AgCl is white, hence the solution cannot be AgCl.
Determination of NaCl
Determination of NaCl can be done by Mohr's Method or Volhard's method. But results in Volhard's method are more accurate . Its uses the method of back titration with Potassium Thiocynate which forms a AgCl precipitate . Prior to titration,excess AgNO3 ( The problem also has a clue that excess reagents are present in the lab ) is added to the NaCl solution so that all the Cl- ions react with Ag+. Fe3+ is then added as an indicator and the solution is titrated with KSCN to form a silver thiocyannite precipitate (AgSCN). Once all the silver has reacted, a slight excess of SCN- reacts with Fe3+ to form Fe(SCN)3 dark red complex. The concentration of Cl- is determined by subtracting the titer findings of Ag+ ions that reacted to form AgSCN from the Ag NO3 moles added to the solution. This is used because pH of the solution is acidic. If the pH of solution is basic, Mohr's method is used.
Reactions
Ag+ (aq)+ Cl-(aq) = AgCl(aq)
Ag+(aq) + SCN-(aq) = AgSCN(aq)
Fe3+(aq) + SCN-(aq) = [FeSCN]2- (aq)
<span>The answer is curie.
</span>
Answer:
c. can have a large cumulative effect
Explanation:
Noncovalent interactions between molecules are weaker than covalent interactions. Noncovalent interactions between molecules are of various types which include van der Waals forces, hydrogen bonding, and electrostatic interactions or ionic bonding.
van der Waals forces are weak interactions found in all molecules. They include dipole-dipole interactions - formed due to the differences in the electronegativity of atoms - and the London dispersion forces.
Hydrogen Bonds results when electrons are shared between hydrogen and a strongly electronegative atoms like fluorine, nitrogen, oxygen. The hydrogen acquires a partial positive charge while the electronegative atom acquires a partial negative. This results in attraction between hydrogen and neighboring electronegative molecules.
Ionic bonds result due to the attraction between groups with opposite electrical charges, for example in common salt between sodium and chloride ions.
Even though these noncovalent interactions are weak, cumulatively, they exert strong effect. For example, the high boiling point of water and the crystal structure of ice are due to hydrogen bonding.