Answer:
False
, The fatty layer do not contains many nerves and blood vessels. The fatty layer is related to skin layers.
Explanation:
The fatty layer is the most under a layer of skin. It made up of a system of collagen and fat cells. It helps maintain the body's temperature and shields the body from harm by serving as a shock absorber.
The dermis is the central layer of the skin. The dermis is maintained collectively by a protein termed collagen. This layer gives skin elasticity and power. The dermis also holds shock and feel receptors.
Answer:
Ro = 8.65 [g/cm³]
Explanation:
We must remember that density is defined as the ratio of mass to volume.

where:
m = mass = 0.450 [kg] = 450 [g]
V = volumen = 52 [cm³]
Ro = density [g/cm³]
Now replacing:
![Ro = 450/52\\Ro = 8.65 [g/cm^{3} ]](https://tex.z-dn.net/?f=Ro%20%3D%20450%2F52%5C%5CRo%20%3D%208.65%20%5Bg%2Fcm%5E%7B3%7D%20%5D)
Answer:
The box displacement after 6 seconds is 66 meters.
Explanation:
Let suppose that velocity given in statement represents the initial velocity of the box and, likewise, the box accelerates at constant rate. Then, the displacement of the object (
), in meters, can be determined by the following expression:
(1)
Where:
- Initial velocity, in meters per second.
- Time, in seconds.
- Acceleration, in meters per square second.
If we know that
,
and
, then the box displacement after 6 seconds is:

The box displacement after 6 seconds is 66 meters.
The base of the pyramid has the producers and everything else above the base falls under the consumers category i.e the locusts,frogs and the snake. The grass is the producer, the locust is a consumer, the frog is a special type of omnivore, termed the "life-history omnivore" since they eat both plants and animals but at different times in their lives. In this case they are just omnivores and lastly, the snake is a carnivore.
Answer:
The pressure drop predicted by Bernoulli's equation for a wind speed of 5 m/s
= 16.125 Pa
Explanation:
The Bernoulli's equation is essentially a law of conservation of energy.
It describes the change in pressure in relation to the changes in kinetic (velocity changes) and potential (elevation changes) energies.
For this question, we assume that the elevation changes are negligible; so, the Bernoulli's equation is reduced to a pressure change term and a change in kinetic energy term.
We also assume that the initial velocity of wind is 0 m/s.
This calculation is presented in the attached images to this solution.
Using the initial conditions of 0.645 Pa pressure drop and a wind speed of 1 m/s, we first calculate the density of our fluid; air.
The density is obtained to be 1.29 kg/m³.
Then, the second part of the question requires us to calculate the pressure drop for a wind speed of 5 m/s.
We then use the same formula, plugging in all the parameters, to calculate the pressure drop to be 16.125 Pa.
Hope this Helps!!!