1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zepelin [54]
3 years ago
11

Plssss help I need help with this question I need a good grade on the test!!!

Physics
2 answers:
daser333 [38]3 years ago
5 0

Answer

I would say it is option B as it has more negative charges and the positive and negative charges are not in magnitude so the negative charge would definitely produce more impact.

RUDIKE [14]3 years ago
4 0

Answer:

The answer is 'b'

I am not very sure...

You might be interested in
Just wanna make sure im right
NikAS [45]
It is right have a good day

explanation step by step
6 0
3 years ago
If the frequency of a given wave increases,what happens to the wavelength?
Greeley [361]
It shortens so that the tips reach faster
8 0
3 years ago
Read 2 more answers
A thin spherical shell of radius R has a total charge +Q uniformly distributed over its surface. Of the following distance r fro
grigory [225]

Answer:

The correct answer is B

Explanation:

Let's calculate the electric field using Gauss's law, which states that the electric field flow is equal to the charge faced by the dielectric permittivity

         Φ._{E} = ∫ E. dA = q_{int} / ε₀

For this case we create a Gaussian surface that is a sphere.  We can see that the two of the sphere and the field lines from the spherical shell grant in the direction whereby the scalar product is reduced to the ordinary product

        ∫ E dA = q_{int} / ε₀

The area of ​​a sphere is

     A = 4π r²

   

    E 4π r² =q_{int} / ε₀

    E = (1 /4πε₀ )  q / r²

Having the solution of the problem let's analyze the points:

A   ) r = 3R / 4  = 0.75 R.

  In this case there is no charge inside the Gaussian surface therefore the electric field is zero

        E = 0

B) r = 5R / 4 = 1.25R

In this case the entire charge is inside the Gaussian surface, the field is

    E = (1 /4πε₀ )  Q / (1.25R)²

    E = (1 /4πε₀ )  Q / R2 1 / 1.56²

    E₀ = (1 /4π ε₀ )  Q / R²

   E_{B} =  Eo /1.56 ²

  E_{B}  = 0.41 Eo

C) r = 2R

All charge inside is inside the Gaussian surface

    E_{B} =(1 /4π ε₀ ) Q    1/(2R)²

    E_{B} = (1 /4π ε₀ ) q/R²   1/4

    E_{B} = Eo  1/4

    E_{B} = 0.25 Eo

D) False the field changes with distance

The correct answer is B

4 0
3 years ago
A proton is moved from a position where the electric potential is 125 V to a position where the electric potential is 275 V. The
kakasveta [241]
We determine the electric potential energy of the proton by multiplying the net electric potential to the charge of the proton. The net electric potential is the difference of the final state to the that of the initial state. So, it would be 275 - 125 = 150 V.

electric potential energy = 150 (<span>1.602 × 10-19) = 2.4x10^-17 J</span>
7 0
3 years ago
A 5.50 kg sled is initially at rest on a frictionless horizontal road. The sled is pulled a distance of 3.20 m by a force of 25.
kiruha [24]

(a) 69.3 J

The work done by the applied force is given by:

W=Fd cos \theta

where:

F = 25.0 N is the magnitude of the applied force

d = 3.20 m is the displacement of the sled

\theta=30^{\circ} is the angle between the direction of the force and the displacement of the sled

Substituting numbers into the formula, we find

W=(25.0 N)(3.20 m)(cos 30^{\circ})=69.3 J

(b) 0

The problem says that the surface is frictionless: this means that no friction is acting on the sled, therefore the energy dissipated by friction must be zero.

(c) 69.3 J

According to the work-energy theorem, the work done by the applied force is equal to the change in kinetic energy of the sled:

\Delta K = W

where

\Delta K is the change in kinetic energy

W is the work done

Since we already calculated W in part (a):

W = 69.3 J

We therefore know that the change in kinetic energy of the sled is equal to this value:

\Delta K=69.3 J

(d) 4.9 m/s

The change in kinetic energy of the sled can be rewritten as:

\Delta K=K_f - K_i = \frac{1}{2}mv^2-\frac{1}{2}mu^2 (1)

where

Kf is the final kinetic energy

Ki is the initial kinetic energy

m = 5.50 kg is the mass of the sled

u = 0 is the initial speed of the sled

v = ? is the final speed of the sled

We can calculate the variation of kinetic energy of the sled, \Delta K, after it has travelled for d=3 m. Using the work-energy theorem again, we find

\Delta K= W = Fd cos \theta =(25.0 N)(3.0 m)(cos 30^{\circ})=65.0 J

And substituting into (1) and re-arrangin the equation, we find

v=\sqrt{\frac{2 \Delta K}{m}}=\sqrt{\frac{2(65.0 J)}{5.50 kg}}=4.9 m/s

6 0
3 years ago
Other questions:
  • Which type of wave would actually slow down when moving from the air into the ocean?
    7·2 answers
  • The magnetic dipole moment of Earth is 8.00 ✕ 1022 J/T. Assume that this is produced by charges flowing in Earth's molten outer
    5·1 answer
  • I NEED AN ANSWER ASAP!!!!!!!!!!!! PLEASE HELP ME!!!!!!!!!!!!!!! A 1.5m wire carries a 9 A current when a potential difference of
    6·1 answer
  • What gives the gem amethyst its purplish color
    5·1 answer
  • Which statement is the correct representation of these electric field lines?
    15·2 answers
  • Which of these is the easiest mineral identification property to use when you want to know whether you have pyrite or actual gol
    15·1 answer
  • Which factor does not affect the resistance of a material?
    8·2 answers
  • This is for 6th grade Science -Geology - weather and climate.
    6·1 answer
  • How does the structural of unicellular and multicellular oraganism differ
    9·1 answer
  • Describe how radio waves are different from sound waves.
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!