7<span> to 49 10 to 100. 30 Secs. 3. What is the </span>pH<span> value of pure </span>water<span>? 0 3 </span>7<span> 10 ... How do acids </span>taste<span>? </span>bitter sour<span> sweet salty. 30 Secs. </span>7<span>. How do </span>bases taste<span>? </span>bitter<span> ... 8. Which kind of solution would react with a metal? acidic basic </span>neutral water<span> ... cocoa </span>has<span> a </span>bitter taste<span>. It is most likely which of the following? acid </span><span>base neutral</span>
Answer:
The percent by mass of 3.55 g NaCl dissolved in 88 g water is 3.88%
Explanation:
When a solute dissolves in a solvent, the mass of the resulting solution is a sum of the mass of the solute and the solvent.
A percentage is a way of expressing a quantity as a fraction of 100. In this case, the percentage by mass of a solution is the number of grams of solute per 100 grams of solution and can be represented mathematically as:

In this way it allows to precisely establish the concentration of solutions and express them in terms of percentages.
In this case:
- mass of solute: 3.55 g
- mass of solution: 3.55 g + 88 g= 91.55 g
Replacing:

Percent by mass= 3.88%
<u><em>The percent by mass of 3.55 g NaCl dissolved in 88 g water is 3.88%</em></u>
Answer:
They test it using the scientific method.
The Molar concentration of your analyte solution is 1.17 m
<h3>What is titration reaction?</h3>
- Titration is a chemical analysis procedure that determines the amount of a sample's ingredient by adding a precisely known amount of another substance to the measured sample, with which the desired constituent reacts in a specific, known proportion.
Make use of the titration formula.
The formula is molarity (M) of the acid x volume (V) of the acid = molarity (M) of the base x volume (V) of the base.
if the titrant and analyte have a 1:1 mole ratio. (Molarity is a measure of a solution's concentration represented as the number of moles of solute per litre of solution.)
26 x 1.8 = 40 x M
M = 26 x1.8 /40
M = 1.17
The Molar concentration of your analyte solution is 1.17 m
To learn more about Titration refer,
brainly.com/question/186765
#SPJ4
Velocity and mass are directly proportional to the quantity of momentum by:
p = mv. Therefore, and increase in either velocity or mass will lead to an increase in momentum and vice versa. Momentum during a reaction is always conserved, meaning that the mass and initial velocity before a reaction will always be equal to the change in mass and velocity produced after the reaction. Kinetic energy after a reaction, however, is not always conserved. For example if a fast moving vehicle collided with a stationary vehicle, and moved together, the overall kinetic energy would be after the reaction, as a heaver mass would be moved by the same velocity causing a decrease in kinetic energy.
I don't know if this is exactly what you are looking for, but in physics this is how it is understood.