1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dedylja [7]
3 years ago
15

Discovery can't live without

Chemistry
1 answer:
vlabodo [156]3 years ago
6 0

Are you typing a statement or asking a question


You might be interested in
Wildfires occur because of... (Choose the 3 correct answers)
attashe74 [19]
Dry trees, shrubs, and other vegetation as well as lightening strikes.
6 0
3 years ago
Read 2 more answers
In the absence of sodium methoxide, the same alkyl bromide gives a different product. Draw an arrowpushing mechanism to account
hoa [83]

Answer:

See explanation below

Explanation:

The question is incomplete, cause you are not providing the structure. However, I found the question and it's attached in picture 1.

Now, according to this reaction and the product given, we can see that we have sustitution reaction. In the absence of sodium methoxide, the reaction it's no longer in basic medium, so the sustitution reaction that it's promoted here it's not an Sn2 reaction as part a), but instead a Sn1 reaction, and in this we can have the presence of carbocation. What happen here then?, well, the bromine leaves the molecule leaving a secondary carbocation there, but the neighbour carbon (The one in the cycle) has a more stable carbocation, so one atom of hydrogen from that carbon migrates to the carbon with the carbocation to stabilize that carbon, and the result is a tertiary carbocation. When this happens, the methanol can easily go there and form the product.

For question 6a, as it was stated before, the mechanism in that reaction is a Sn2, however, we can have conditions for an E2 reaction and form an alkene. This can be done, cause the extoxide can substract the atoms of hydrogens from either the carbon of the cycle or the terminal methyl of the molecule and will form two different products of elimination. The product formed in greater quantities will be the one where the negative charge is more stable, in this case, in the primary carbon of the methyl it's more stable there, so product 1 will be formed more (See picture 2)

For question 6b, same principle of 6a, when the hydrogen migrates to the 2nd carbocation to form a tertiary carbocation the methanol will promove an E1 reaction with the vecinal carbons and form two eliminations products. See picture 2 for mechanism of reaction.

3 0
3 years ago
In order to reduce the exposure to organic solvents like turpentine, some art instructors recommend the students clean brushes a
kykrilka [37]
Generally speaking, organic molecules tend to dissolve in solvents that have similar physical properties. A good rule of thumb is that "like dissolves like". Meaning, polar compounds can dissolve polar compounds and nonpolar compounds can dissolve nonpolar compounds.

To apply this to the current problem, we are told that the brushes are being cleaned with vegetable oil or mineral oil. In this case, the oils are used as solvents. In order for these solvents to be effective, the compounds they are trying to dissolve must be similar in structure and properties to other oils. Therefore, vegetable oil or mineral oil will be most effective in removing oil-based paints, as these will have the similar properties needed to dissolve in the oil solvents.
6 0
3 years ago
Explain why you hear a “whoosh” sound when you open a can containing a carbonated drink. Which gas law applies?
Lana71 [14]

Carbonated drinks have the air under pressure so that carbon bubbles are forced into the drink, keeping it carbonated. So when you open a can, the air under pressure in the can comes out of the can at a high speed, making a "whooshing" sound. The gas law that applies to this concept is the Boyle's Law (PV=k or P1V1=P2V2).

6 0
3 years ago
Read 2 more answers
What is the molarity of 2.00 L of a solution that contains 14.6 g NaCl?
White raven [17]

Answer: The molarity of the solution is 0.125 M

Explanation:

Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.

Molarity=\frac{n}{V_s}

where,

n = moles of solute

V_s = volume of solution in L

moles of NaCl = \frac{\text {given mass}}{\text {Molar mass}}=\frac{14.6g}{58.5g/mol}=0.250mol

Now put all the given values in the formula of molality, we get

Molarity=\frac{0.250mol}{2.00L}=0.125M

Therefore, the molarity of the solution is 0.125 M

8 0
3 years ago
Other questions:
  • What is an isotope ? how is the mass calculated ?
    15·1 answer
  • What is the mass, volume, density, and substance for block D:
    10·1 answer
  • How many grams of sodium carbonate contain 1.773 × 1017 carbon atoms
    12·1 answer
  • How many times a one pound (2.2 kg) block of iron can be split in half before it stops being iron.
    12·1 answer
  • Which object would a geologist date using carbon-14 dating?
    11·2 answers
  • Which of the following statements about hydrogen peroxide (H2O2) and water (H2O) correctly describe their properties?
    12·1 answer
  • When blood moves from an atrium to a ventricle, it must pass through a __________
    7·2 answers
  • Chemistry Help (Naming Oxyacids Chart)
    10·1 answer
  • What is the molecular geometry? of CH3COOH
    10·1 answer
  • Heat is transferred in there ways wat and wat ???​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!