Answer:
18 m
Explanation:
G = Gravitational constant
m = Mass of planet = 
= Density of planet
V = Volume of planet assuming it is a sphere = 
r = Radius of planet
Acceleration due to gravity on a planet is given by

So,

Density of other planet = 
Radius of other planet = 

Since the person is jumping up the acceleration due to gravity will be negative.
From kinematic equations we have

On the other planet

The man can jump a height of 18 m on the other planet.
Answer:
get students and a license
The force equals the coefficient of static friction times the weight. Use gravity g=9.8 m/s^2
0.43*40*9.8=16.856 N
Answer:
300 N/m
Explanation:
given,
Load attached to the spring, W = 54 N
length of stretch of the spring, x = 0.15 m
spring constant= ?
Force applied on the spring is calculated by the equation
F = k x
where k is the spring constant
x is the displacement of the spring due to applied load
now,
54 = k × 0.15


hence, the spring constant is equal to 300 N/m
Answer:
13.23J
Explanation:
PE = m*g*h
PE = (3 kg ) * (9.8 m/s/s) * (0.45 m)