The formula for energy of motion is KE = .5 x m x v^2
Ke= Kinetic Energy in Joules
m = Mass in Kilograms
v = Velocity in Meters per Second
Answer:
SKID
Explanation:
In general, airplane tracks are flat, they do not have cant, consequently the friction force is what keeps the bicycle in the circle.
Let's use Newton's second law, let's set a reference frame with the horizontal x-axis and the vertical y-axis.
Y axis y
N- W = 0
N = W
X axis (radial)
fr = m a
the acceleration in the curve is centripetal
a =
the friction force has the expression
fr = μ N
we substitute
μ mg = m v²/r
v =
we calculate
v =
v = 1,715 m / s
to compare with the cyclist's speed let's reduce to the SI system
v₀ = 18 km / h (1000 m / 1 km) (1 h / 3600 s) = 5 m / s
We can see that the speed that the cyclist is carrying is greater than the speed that the curve can take, therefore the cyclist will SKID
Answer:
2.52 m/s
Explanation:
When the man takes a step, his foot is stationary while his body revolves around it. At the point when his body is directly above his foot, there will be no normal force at his maximum speed.
Sum of the forces in the radial direction:
∑F = ma
mg = m v² / r
g = v² / r
v = √(gr)
Given that r = 0.650 m:
v = √(9.8 m/s² × 0.650 m)
v = 2.52 m/s
Answer:
Light slows down when it moves from air into water.
Explanation:
It is the property of light that travels faster in a less dense medium.
In a more dense medium, the speed of the light slows down and bends towards the normal.
The air is less dense medium and water is a more dense medium.
When light passes from air to water, the light bends.
This is known as the refraction of light.
I included things
Hope this helps!