Answer:
The moment of inertia is 
Explanation:
The moment of inertia is equal:

If r is 
and 


Answer:
The speed of the skier after moving 100 m up the slope are of V= 25.23 m/s.
Explanation:
F= 280 N
m= 80 kg
α= 12º
μ= 0.15
d= 100m
g= 9,8 m/s²
N= m*g*sin(α)
N= 163 Newtons
Fr= μ * N
Fr= 24.45 Newtons
∑F= m*a
a= (280N - 24.5N) / 80kg
a= 3.19 m/s²
d= a * t² / 2
t=√(2*d/a)
t= 7.91 sec
V= a* t
V= 3.19 m/s² * 7.91 s
V= 25.23 m/s
The work function is what we call the minimum energy that is required by an electron to leave the metal target in the photoelectric effect.
Answer:

Explanation:
First of all, we need to calculate the total energy supplied to the calorimeter.
We know that:
V = 3.6 V is the voltage applied
I = 2.6 A is the current
So, the power delivered is

Then, this power is delivered for a time of
t = 350 s
Therefore, the energy supplied is

Finally, the change in temperature of an object is related to the energy supplied by

where in this problem:
E = 3276 J is the energy supplied
C is the heat capacity of the object
is the change in temperature
Solving for C, we find:
