Answer:
110.9 m/s²
Explanation:
Given:
Distance of the tack from the rotational axis (r) = 37.7 cm
Constant rate of rotation (N) = 2.73 revolutions per second
Now, we know that,
1 revolution =
radians
So, 2.73 revolutions = 
Therefore, the angular velocity of the tack is, 
Now, radial acceleration of the tack is given as:

Plug in the given values and solve for
. This gives,
![a_r=(17.153\ rad/s)^2\times 37.7\ cm\\a_r=294.225\times 37.7\ cm/s^2\\a_r=11092.28\ cm/s^2\\a_r=110.9\ m/s^2\ \ \ \ \ \ \ [1\ cm = 0.01\ m]](https://tex.z-dn.net/?f=a_r%3D%2817.153%5C%20rad%2Fs%29%5E2%5Ctimes%2037.7%5C%20cm%5C%5Ca_r%3D294.225%5Ctimes%2037.7%5C%20cm%2Fs%5E2%5C%5Ca_r%3D11092.28%5C%20cm%2Fs%5E2%5C%5Ca_r%3D110.9%5C%20m%2Fs%5E2%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5B1%5C%20cm%20%3D%200.01%5C%20m%5D)
Therefore, the radial acceleration of the tack is 110.9 m/s².
Absolute, Atmospheric, Differential, and Gauge Pressure
Thermal energy is the total energy of all the molecules in an object. The thermal energy of an object depends on three things: 4 the number of molecules in the object 4 the temperature of the object (average molecular motion) 4 the arrangement of the object's molecules (states of matter).
Hope this helps
Answer:
Explanation:
Given that,
Bathysphere radius
r = 1.5m
Mass of bathysphere
M = 1.2 × 10⁴ kg
Constant speed of descending.
v = 1.2m/s
Resistive force
Fr = 1100N upward direction
Density of water
ρ = 1.03 × 10³kg/m³
The volume of the bathysphere can be calculated using
V = 4πr³ / 3
V = 4π × 1.5³ / 3
V = 14.14 m³
The Bouyant force can be calculated using
Fb = ρgV
Fb = 1.03 × 10³ × 9.81 × 14.14
Fb = 142,846.18 N
Buoyant force is acting upward
Weight of the bathysphere
W = mg
W = 1.2 × 10⁴ × 9.81
W = 117,720 N
Weight is acting downward
The net positive buoyant using resolving
Fb+ = Fb — W
Fb+ = 142,846.18 — 117,720
Fb+ = 25,126.18 N
The force acting downward is the weight of the submarine and it is equal to the positive buoyant force and the resistive force
W = Fb+ + Fr
W = 25,126.18 + 1100
W = 26,226.18
mg = 26,226.18
m = 26,226.18 / 9.81
m = 2673.4kg
Mass of submarine is 2673.4kg
To solve the problem it is necessary to apply the equations related to the conservation of both <em>kinetic of rolling objects</em> and potential energy and the moment of inertia.
The net height from the point where it begins to roll with an inclination of 30 degrees would be



In the case of Inertia would be given by

In general, given an object of mass m, an effective radius k can be defined for an axis through its center of mass, with such a value that its moment of inertia is



Replacing in Energy conservation Equation we have that
Potential Energy = Kinetic Energy of Rolling Object




Therefore the correct answer is C.