You will need the equation PV = nRT
P = Pressure in kPa
V = Volume in L
n = moles
R = 8.314 (constant)
T = Temperature in Kelvin
First convert 2.5 atm into kPa:
2.5 X 101.3 = 253.25 kPa
Convert 125 Celsius into Kelvin:
125 + 273 = 398 K
Convert Gallons to Litres:
1.25 X 3.79 = 4.74 L
Plug your values into the equation to solve for n:
(253.25)(4.74) = n(8.314)(398)
n = (253.25)(4.74)/(8.314)(398)
n = 0.362 moles
Now use M = m/n to solve for the mass of O2
M = Molar Mass
M = mass
n= moles
32 = m/(0.362)
m = (32)(0.362)
m = 11.58g
The unsaturated zone is the portion of the subsurface above the groundwater table. The soil and rock in this zone contains air as well as water in its pores. ... Unlike the aquifers of the saturated zone below, the unsaturated zone is not a source of readily available water for human consumption
Answer:
Percentage error = 1.88 %
Solution:
Data Given:
Mass of Sample = 20.46 g
Volume of Sample = 43.0 mL - 40.0 mL = 3.0 mL
Formula Used:
Density = Mass / Volume
Putting values,
Density = 20.46 g / 3.0 mL
Density = 6.82 g.mL⁻¹
Percentage Error:
Experimental Value = 6.82 g.mL⁻¹
Accepted Value = 6.95 g.mL⁻¹
= 6.82 g.mL⁻¹ / 6.95 g.mL⁻¹ × 100 = 98.12 %
Percentage Error = 100 % - 98.12 %
Percentage error = 1.88 %
The correct answers are :
Changing the volume of the system.
Changing the temperature of the system.
Equilibrium will remain unaffected if the concentration of products and reactants are kept the same, and the temperature of the system is kept constant.
As the system is closed, we cannot add or remove products or reactants.
Change in temperature will shift the chemical equilibrium towards the reactant or product depending on whether the reaction is exothermic or endothermic.
Also change in volume will shift the chemical equilibrium of a chemical reaction if the reactants or products or both are gases.