Answer:
we can say here that | v² - u² | is the same for upward as for downward and change in the speed is different here so | v - u | same whenever rock travel up, down for same time and not same distances
Explanation:
given data
base = 3.60 m
speed u = 8 m/s
height = 1.70 m
to find out
check change in speed
solution
we know here formula for v that is
v² = u² - 2gh ............1 for upward speed
v² = u² + 2gh ............2 for projected speed
so here put all value and find v with h = 3.60 - 1.70 = 1.9 m
v² = 8² - 2(9.8) 1.9 = 26.76
v² = 8² + 2(9.8) 1.9 = 101.24
v = 5.173 m/s ..............3
v = 10.061 m/s ...................4
so change in speed form 3 and 4 equation
change in speed = v - u = 8 - 5.173 = 2.827 m/s .................5
change in speed = v - u = 10.061 - 8 = 2.061 m/s ..................6
so now we can say here that | v² - u² | is the same for upward as for downward and change in the speed is different here so | v - u | same whenever rock travel up, down for same time and not same distances
Answer:
The correct answer is the third option: The kinetic energy of the water molecules decreases.
Explanation:
Temperature is, in depth, a statistical value; kind of an average of the particles movement in any physical system (such as a glass filled with water). Kinetic energy, for sure, is the energy resulting from movement (technically depending on mass and velocity of a system; in other words, the faster something moves, the greater its kinetic energy.
Since temperature is related to the total average random movement in a system, and so is the kinetic energy (related to movement through velocity), as the thermometer measures <u>less temperature</u>, that would mean that the particles (in this case: water particles) are <u>moving slowly</u>, so that: the slower something moves, the lower its kinetic energy.
<u>In summary:</u> temperature tells about how fast are moving and colliding the particles within a system, and since it is <em>directly proportional</em> to the amount of movement, it can be related (also <em>directly proportional</em>) to the kinectic energy.
1) metal
Even though metalloids are also conductors of heat and electricity, malleable they are not as good as metals.
Metals are very good conductors of electricity and heat. They are also very hard to touch. Noble gases and non metals are the exact opposite in physical and chemical properties. Metals readily react with oxygen.
Perseverance, good mind set, and work ethic