Answer:
The specific weight of unknown liquid is found to be 15 KN/m³
Explanation:
The total pressure in tank is measured to be 65 KPa in the tank. But, the total pressure will be equal to the sum of pressures due to both oil and unknown liquid.
Total Pressure = Pressure of oil + Pressure of unknown liquid
65 KPa = (Specific Weight of oil)(depth of oil) + (Specific Weight of unknown liquid)(depth of unknown liquid)
65 KN/m² = (8.5 KN/m³)(5 m) + (Specific Weight of Unknown Liquid)(1.5 m)
(Specific Weight of Unknown Liquid)(1.5 m) = 65 KN/m² - 42.5 KN/m²
(Specific Weight of Unknown Liquid) = (22.5 KN/m²)/1.5 m
<u>Specific Weight of Unknown Liquid = 15 KN/m³</u>
Answer:
In this era, Sun Ra was among the first of any musicians to make extensive and pioneering use of synthesizers and other various electronic keyboards; he was given a prototype Minimoog by its inventor, Robert Moog.
Explanation:
Answer:
The costs to run the dryer for one year are $ 9.03.
Explanation:
Given that the clothes dryer in my home has a power rating of 2250 Watts, and to dry one typical load of clothes the dryer will run for approximately 45 minutes, and in Ontario, the cost of electricity is $ 0.11 / kWh, to calculate the costs to run the dryer for one year the following calculation must be performed:
1 watt = 0.001 kilowatt
2250/45 = 50 watts per minute
45 x 365 = 16,425 / 60 = 273.75 hours of consumption
50 x 60 = 300 watt = 0.3 kw / h
0.3 x 273.75 = 82.125
82.125 x 0.11 = 9.03
Therefore, the costs to run the dryer for one year are $ 9.03.
Answer:
component of acceleration are a = 3.37 m/s² and ar = 22.74 m/s²
magnitude of acceleration is 22.98 m/s²
Explanation:
given data
velocity = 10 m/s
initial time to = 0
distance s = 400 m
time t = 14 s
to find out
components and magnitude of acceleration after the car has travelled 200 m
solution
first we find the radius of circular track that is
we know distance S = 2πR
400 = 2πR
R = 63.66 m
and tangential acceleration is
S = ut + 0.5 ×at²
here u is initial speed and t is time and S is distance
400 = 10 × 14 + 0.5 ×a (14)²
a = 3.37 m/s²
and here tangential acceleration is constant
so velocity at distance 200 m
v² - u² = 2 a S
v² = 10² + 2 ( 3.37) 200
v = 38.05 m/s
so radial acceleration at distance 200 m
ar = 
ar = 
ar = 22.74 m/s²
so magnitude of total acceleration is
A = 
A = 
A = 22.98 m/s²
so magnitude of acceleration is 22.98 m/s²