False
..............
It increases the primary current a step up reduces the primary current
Answer:
A. energy transformations
Explanation:
did it help ? I was going to put the same things so
Answer:
1.0MG
Explanation:
to solve this problem we use this formula
S₀-S/t = ksx --- (1)
the values have been given as
concentration = S₀ = 250mg
effluent concentration = S= 10mg
value of K = 0.04L/day
x = 3000 mg
when we put these values into this equation,
250-10/t = 0.04x10x3000
240/t = 1200
we cross multiply from this stage
240 = 1200t
t = 240/1200
t = 0.2
remember the question says that 5MGD is required to be treated
so the volume would be
v = 0.2x5
= 1.0 MG
Answer:
critical stress required for the propagation is 27.396615 ×
N/m²
Explanation:
given data
specific surface energy = 0.90 J/m²
modulus of elasticity E = 393 GPa = 393 ×
N/m²
internal crack length = 0.6 mm
to find out
critical stress required for the propagation
solution
we will apply here critical stress formula for propagation of internal crack
( σc ) =
.....................1
here E is modulus of elasticity and γs is specific surface energy and a is half length of crack i.e 0.3 mm = 0.3 ×
m
so now put value in equation 1 we get
( σc ) =
( σc ) =
( σc ) = 27.396615 ×
N/m²
so critical stress required for the propagation is 27.396615 ×
N/m²