1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bearhunter [10]
3 years ago
13

How much work is done on a 75 newton bowling ball when you carry it horizontally across a 10 meter room

Physics
1 answer:
svlad2 [7]3 years ago
6 0

F = force applied to hold the weight of the bowling ball = weight of the bowling ball = 75 N

d = distance through which the bowling ball is moved horizontally = 10 meter

θ = angle between the force in vertically upward direction  and displacement in horizontal direction = 90

W = work done on the bowling ball

work done on the bowling ball is given as

W = F d Cosθ

inserting the values

W = (75) (10) Cos90

W =  (75) (10) (0)

W = 0 J

You might be interested in
(MICROWAVE) <br><br><br>Describe the device and its function.
andreev551 [17]
Answer: You use it to cook food so you can eat. put whatever kind of food you like in there and heat it up for how long you want and then it will beep when done. then you can eat!
8 0
3 years ago
Suppose a soccer player kicks the ball from a distance 29 m toward the goal. find the initial speed of the ball if it just passe
Rudik [331]

The ball's vertical velocity at the time it just passes over the goal is 0 m/s. Its initial vertical velocity is unknown and we denote it by v\sin39^\circ, where v here is the ball's initial speed. Vertically, the only force acting on the ball is gravity, which attributes a downward acceleration of 9.8 m/s^2. We expect the maximum height achieved by the ball to be 2.4 m, so we can find the initial speed by solving

\left(0\,\dfrac{\mathrm m}{\mathrm s}\right)^2-\left(v\sin39^\circ\right)^2=2\left(-9.8\,\dfrac{\mathrm m}{\mathrm s^2}\right)(2.4\,\mathrm m)

\implies v=11\,\dfrac{\mathrm m}{\mathrm s}

6 0
3 years ago
A particle of mass 10 g and charge 80 mC moves through a uniform magnetic field,in a region where the free-fall acceleration is .
Alex777 [14]

Answer:

B=1.223\frac{T\cdot m}{s}\frac{1}{v}

Explanation:

According to the first Newton's law, when a particle moves with constant velocity, the sum of forces on it is zero. So, we have:

F_m=F_g

Here F_m=qvBsin\theta is the magnetic force and F_g=mg is the gravitational force. The velocity of the particle is perpendicular to the magnetic field, so \theta=90^\circ. Replacing and solving for B:

qvBsin(90^\circ)=mg\\B=\frac{mg}{qv}\\B=\frac{mg}{q}\frac{1}{v}\\B=\frac{(10*10^{-3}kg)(9.8\frac{m}{s^2})}{80*10^{-3}C}\frac{1}{v}\\B=1.223\frac{T\cdot m}{s}\frac{1}{v}

4 0
3 years ago
A charge of -8.00 nC is spread uniformly over the surface of one face of a nonconducting disk of radius 1.05 cm.
gavmur [86]

Answer:

(a) E = -1.02 \times 10^5~N/C

(b) E = -9.7 \times 10^4~N/C

Explanation:

(a) The electric field for a point charge is given by the following formula:

\vec{E} = \frac{1}{4\pi\epsilon_0}\frac{Q}{r^2}\^r

Since this formula is valid for point charges, we have to choose an infinitesimal area, da, from the disk. Then we will calculate the E-field (dE) created by this small area using the above formula, then we will integrate over the entire disk to find the E-field created by the disk.

dE = \frac{1}{4\pi\epsilon_0}\frac{dQ}{(\sqrt{z^2 + r^2})^2}

Here, z = 0.025 m. And r is the distance of the infinitesimal area from the axis. dQ is the charge of the small area, and should be written in terms of the given variables.

In cylindrical coordinates, da = r dr dθ. So,

\frac{Q}{\pi R^2} = \frac{dQ}{da}\\\frac{Q}{\pi R^2} = \frac{dQ}{rdrd\theta}\\dQ = \frac{Qrdrd\theta}{\pi R^2}

Hence, dE is now:

dE = \frac{1}{4\pi\epsilon_0}\frac{Q}{\pi R^2}\frac{rdrd\theta}{z^2 + r^2}

The surface integral over the disk can now be taken, but there is one more thing to be considered. This dE is a vector quantity, and it needs to be separated its components.

It has two components, one in the vertical direction and another in the horizontal direction. By symmetry, the horizontal components cancel out each other in the end (since it is a disk, each horizontal vector has an equal but opposite counterpart), so only the vertical component should be considered.

Let us denote the angle between dE and the horizontal axis as α. This angle can be found by the geometry of the triangle formed by dE, vertical axis of the disk, and horizontal plane. So,

\sin(\alpha) = \frac{z}{\sqrt{z^2 + r^2}}

Therefore, vertical component of dE now becomes

dE_z = \frac{1}{4\pi\epsilon_0}\frac{Q}{\pi R^2}\frac{rdrd\theta}{z^2 + r^2}\frac{z}{\sqrt{z^2+r^2}} = \frac{1}{4\pi\epsilon_0}\frac{Qz}{\pi R^2}\frac{rdrd\theta}{(z^2+r^2)^{3/2}}\\E_z =  \frac{1}{4\pi\epsilon_0}\frac{Qz}{\pi R^2}\int\limits^{2\pi}_0 \int\limits^R_0 {\frac{rdrd\theta}{(z^2+r^2)^{3/2}}} = \frac{1}{4\pi\epsilon_0}\frac{Qz}{\pi R^2} 2\pi(\frac{1}{z} - \frac{1}{\sqrt{z^2+R^2}})

Substituting the parameters, z = 0.025 m, Q = - 8 x 10^(-9) C, and R = 0.0105 m, yields the final result:

E_z = \frac{1}{2\epsilon_0}\frac{Qz}{\pi R^2}(\frac{1}{z} - \frac{1}{\sqrt{z^2+R^2}}) = -1.02 \times 10^5~N/C

(b) We will have a similar approach, but a simpler integral.

dE = \frac{1}{4\pi\epsilon_0}\frac{dQ}{z^2 + R^2}\\\frac{Q}{2\pi R} = \frac{dQ}{Rd\theta}\\dQ = \frac{Qd\theta}{2\pi}\\dE = \frac{1}{4\pi\epsilon_0}\frac{Qd\theta}{2\pi(z^2 + R^2)}\\dE_z = \frac{1}{4\pi\epsilon_0}\frac{Qd\theta}{2\pi(z^2 + R^2)}\frac{z}{\sqrt{z^2+R^2}} = \frac{1}{4\pi\epsilon_0}\frac{Qzd\theta}{2\pi(z^2 + R^2)^{3/2}}\\E_z = \frac{1}{4\pi\epsilon_0}\frac{Qz}{2\pi(z^2 + R^2)^{3/2}}\int\limits^{2\pi}_0 {} \, d\theta  = \frac{1}{4\pi\epsilon_0}\frac{Qz}{2\pi(z^2 + R^2)^{3/2}}2\pi

E_z = \frac{1}{4\pi\epsilon_0}\frac{Qz}{(z^2 + R^2)^{3/2}} = -9.07\times 10^4~N/C

Note that, in this case the source object is a one dimensional hoop rather than a two dimensional disk.

3 0
3 years ago
How many neutrons does element X have if its atomic number is 43 and its mass number is 164?
Drupady [299]
Hello, 
The mass number is protons+neutrons=mass number. In this case, we have protons+nuetron=164.The atomic number is simply the number of protons so we have 43+neutrons=164. Subtracting 43 from both sides we get nuetrons=121. Hope this helps!
6 0
3 years ago
Read 2 more answers
Other questions:
  • ​when the color purple is reflected off a hat, what can we say is happening to the light waves?
    8·2 answers
  • What would happen if the earth’s mantle was completely solid? Why do you think so?
    15·1 answer
  • Impedance plethysmography is a technique that can be used to detect thrombosis--the presence of clots in a blood vessel--by meas
    5·1 answer
  • Explain how would you identify an unknown substance
    6·2 answers
  • Hi:) why do metals have free electrons? anyone able to explain the conduction part as well? Thanks!
    5·1 answer
  • Two cars start from rest and begin accelerating, one at 10m/s210m/s2 and the other at 12m/s212m/s2. How long will it take for th
    10·1 answer
  • What is the strength of an electric field that will balance the weight of a proton?
    12·1 answer
  • A cow is given a growth hormone and then compared to another cow that was not given a growth hormone. Both cows were weighed at
    11·1 answer
  • Exponential population growth is a major issue that threatens the stability of on Earth. Which of the following is not a factor
    14·1 answer
  • What is the change in air pressure over a given distance called?.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!