1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
netineya [11]
2 years ago
6

How many minutes will it take a car to go from a stop to 33 km/hr if it accelerates at 10 km/hr²

Physics
2 answers:
Ber [7]2 years ago
8 0

Answer:

33= 0+10 * t so t = 33 / 10 = 3.3 hrs

fomenos2 years ago
7 0

the answer is in the number 9.

You might be interested in
Test your prediction through calculation for the situations of the clay bob and the bouncy ball. Assume each has a mass of 100 g
melamori03 [73]

Answer:

a) Δp = -2.0 kgm / s,  b)   Δp = -4 kg m / s

Explanation:

In this exercise the change in moment of a ball is asked in two different cases

a) clay ball, in this case the ball sticks to the door and we have an inelastic collision where the final velocity of the ball is zero

         Δp = p_f - p₀

         Δp = 0 - m v₀

         Δp = - 0.100 20

         Δp = -2.0 kgm / s

b) in this case we have a bouncing ball, this is an elastic collision, as the gate is fixed it can be considered an object of infinite mass, therefore the final speed of the ball has the same modulus of the initial velocity, but address would count

         v_f = - v₀

        Δp = p_f -p₀

        Δp = m v_f - m v₀

        Δp = m (v_f -v₀)

        Δp = 0.100 (-20 - 20)

        Δp = -4 kg m / s

6 0
2 years ago
Particle q1 has a positive 6 µc charge. particle q2 has a positive 2 µc charge. they are located 0.1 meters apart. recall that k
Dmitrij [34]

(a) Force between the two charges

The electrostatic force between the two charges is given by:

F=k\frac{q_1 q_2}{r^2}

where k is the Coulomb's constant, q1 and q2 the two charges, r their separation.


In this problem:

q_1 =6 \mu C=6 \cdot 10^{-6}C

q_2=2 \mu C=2 \cdot 10^{-6}C

r=0.1 m


Substituting into the equation, we find

F=(8.99 \cdot 10^9 Nm^2C^{-2})\frac{(6 \cdot 10^{-6}C)(2 \cdot 10^{-6}C)}{(0.1 m)^2}=10.8 N


(b) direction of particle q2

Particle q2 wants to move in the direction of the force acting on it. The direction of the force depends on the relative sign of the two charges: like charges attract each other, opposite charges repel each other. In this case, the two charges are both positive, so they repel each other and q2 tends to move away from particle q1.

7 0
3 years ago
Read 2 more answers
Jamal is skating on a sidewalk. His initial velocity is 0.0 m/s; 35 seconds later his velocity is 5.0 m/s. What is his accelerat
maxonik [38]

Answer:

answer is 0.1428

Explanation:

Data:- vf=5.0 , vi=0.0 , t=35 , a=? so appling first eq of motion vf=vi+at we have to find a=vf-vi/t , a=5.0-0.0/35 , a=5/35 ,a=0.1428m/sec²

5 0
2 years ago
Read 2 more answers
A room with 3.1-m-high ceilings has a metal plate on the floor with V = 0V and a separate metal plate on the ceiling. A 1.1g gla
miss Akunina [59]

Answer:

The ball traveled 0.827 m

Explanation:

Given;

distance between the metal plates of the room, d = 3.1 m

mass of the glass, m = 1.1g

charge on the glass, q = 4.7 nC

speed of the glass ball, v = 4.8 m/s

voltage of the ceiling, V = +3.0 x 10⁶ V

The repulsive force experienced by the ball when shot to the ceiling with positive voltage, can be calculated using Coulomb's law;

F = qV/d

|F| = (4.7 x 10⁻⁹ x 3 x  10⁶) / (3.1)

|F| = 4.548 x 10⁻³ N

F = - 4.548 x 10⁻³ N

The net horizontal force experienced by this ball is;

F_{net} = F_c - mg\\\\F_{net} = -4.548 *10^{-3} - (1.1*10^{-3} * 9.8)\\\\F_{net} = -15.328*10^{-3} \ N

The work done between the ends of the plate is equal to product of the  magnitude of net force on the ball and the distance traveled by the ball.

W = F_{net} *h\\\\W = 15.328 *10^{-3} *  h

W = K.E

15.328*10^{-3} *h = \frac{1}{2}mv^2\\\\ 15.328*10^{-3} *h = \frac{1}{2}(1.1*10^{-3})(4.8)^2\\\\ 15.328*10^{-3} *h =0.0127\\\\h = \frac{0.0127}{15.328*10^{-3}}\\\\ h = 0.827 \ m

Therefore, the ball traveled 0.827 m

4 0
3 years ago
A rigid, insulated tank whose volume is 10 L is initially evacuated. A pinhole leak develops and air from the surroundings at 1
balandron [24]

Answer:

The answer is "143.74^{\circ} \ C , 8.36\ g, and \ 2.77\ \frac{K}{J}"

Explanation:

For point a:

Energy balance equation:

\frac{dU}{dt}= Q-Wm_ih_i-m_eh_e\\\\

W=0\\\\Q=0\\\\m_e=0

From the above equation:

\frac{dU}{dt}=0-0+m_ih_i-0\\\\\Delta U=\int^{2}_{1}m_ih_idt\\\\

because the rate of air entering the tank that is h_i constant.

\Delta U = h_i \int^{2}_{1} m_i dt \\\\= h_i(m_2 -m_1)\\\\m_2u_2-m_1u_2=h_i(M_2-m_1)\\\\

Since the tank was initially empty and the inlet is constant hence, m_2u-0=h_1(m_2-0)\\\\m_2u_2=h_1m_2\\\\u_2=h_1\\\\

Interpolate the enthalpy between T = 300 \ K \ and\ T=295\ K. The surrounding air  

temperature:

T_1= 25^{\circ}\ C\ (298.15 \ K)\\\\\frac{h_{300 \ K}-h_{295\ K}}{300-295}= \frac{h_{300 \ K}-h_{1}}{300-295.15}

Substituting the value from ideal gas:

\frac{300.19-295.17}{300-295}=\frac{300.19-h_{i}}{300-298.15}\\\\h_i= 298.332 \ \frac{kJ}{kg}\\\\Now,\\\\h_i=u_2\\\\u_2=h_i=298.33\ \frac{kJ}{kg}

Follow the ideal gas table.

The u_2= 298.33\ \frac{kJ}{kg} and between temperature T =410 \ K \ and\  T=240\ K.

Interpolate

\frac{420-410}{u_{240\ k} -u_{410\ k}}=\frac{420-T_2}{u_{420 k}-u_2}

Substitute values from the table.

 \frac{420-410}{300.69-293.43}=\frac{420-T_2}{{u_{420 k}-u_2}}\\\\T_2=416.74\ K\\\\=143.74^{\circ} \ C\\\\

For point b:

Consider the ideal gas equation.  therefore, p is pressure, V is the volume, m is mass of gas. \bar{R} \ is\  \frac{R}{M} (M is the molar mass of the  gas that is 28.97 \ \frac{kg}{mol} and R is gas constant), and T is the temperature.

n=\frac{pV}{TR}\\\\

=\frac{(1.01 \times 10^5 \ Pa) \times (10\ L) (\frac{10^{-3} \ m^3}{1\ L})}{(416.74 K) (\frac{8.314 \frac{J}{mol.k} }{2897\ \frac{kg}{mol})}}\\\\=8.36\ g\\\\

For point c:

 Entropy is given by the following formula:

\Delta S = mC_v \In \frac{T_2}{T_1}\\\\=0.00836 \ kg \times 1.005 \times 10^{3} \In (\frac{416.74\ K}{298.15\ K})\\\\=2.77 \ \frac{J}{K}

5 0
2 years ago
Other questions:
  • . At a frequency ω1, the reactance of a certain capacitor equals that of a certain inductor.
    6·2 answers
  • What is another name for the magnitude of the velocity vector
    5·1 answer
  • _____ are composed of ionized gas trapped in a magnetic arch rising above the surface of the Sun. When seen along the edge of th
    15·1 answer
  • Accorrding to Kepler's third law, a planet whose distance from the Sun is 2 A.U. would have an orbital period of how many Earth-
    14·1 answer
  • Water at the top of Horseshoe Falls (part of Niagara Falls)
    6·1 answer
  • What is the atomic bomb equivalent to a 7.0 earthquake
    6·1 answer
  • Two parallel circular rings of radius R have their centres in the X axis separated by a distance L. If each ring carries a unifo
    15·1 answer
  • Where was the position of the singularity before the big bang ?​
    13·1 answer
  • Thinking about planck's law, which star would give off the most orange light?
    7·1 answer
  • Are the stack temperature and oxygen reasonable for these operating conditions? if not, what oxygen and stack temperature would
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!