6 J is the impulse caused by the change in velocity of 2 kg box from 2 m/s to 5 m/s.
Answer:
The magnitude of impulse is 6 J.
Explanation:
Impulse is the force acting on any object for a given time interval. As force is equal to the product of mass and acceleration and acceleration is the rate of change of velocity with time. Then the product of force with time interval will be equal to the product of mass with change in velocity.
F = m a = 
FΔt = mΔv
Impulse = FΔt=mΔv
As the mass of box is given as 2 kg and the velocity changes from 2 m/s to 5 m/s, then the impulse = 2 × (5-2) = 2 ×3 =6 J
So 6 J is the impulse caused by the change in velocity of 2 kg box from 2 m/s to 5 m/s.
Lactic acid is caused by using atp without oxygen being avaliable
K.E=1/2mv^2 K.E=1/2multiply1multiply8^2=32joules
<h2>
Answer:</h2>
0.126m
<h2>
Explanation:</h2>
According to Hooke's law, the force (F) acting on a spring to cause an extension or compression (e) is given by;
F = k x e -------------------(i)
Where;
k = the spring's constant.
From the question, the force acting on the spring is the weight(W) of the mass. i.e
F = W -----------------------(ii)
<em>But;</em>
W = m x g;
where;
m = mass of the object
g = acceleration due to gravity [usually taken as 10m/s²]
<em>From equation (ii), it implies that;</em>
F = W = m x g
<em>Now substitute F = m x g into equation(i) as follows;</em>
F = k x e
m x g = k x e ------------------(iii)
<em>From the question;</em>
m = m1 = 3.5kg
k = 278N/m
<em>Substitute these values into equation (iii) as follows;</em>
3.5 x 10 = 278 x e
35 = 278e
<em>Now solve for e;</em>
e = 35/278
e = 0.126m
Therefore, the distance the spring is stretched from its unstretched length (which is the same as the extension of the spring) is 0.126m
The force of gravity between the astronauts is 
Explanation:
The magnitude of the gravitational force between two objects is given by:
where
:
is the gravitational constant
are the masses of the two objects
r is the separation between them
In this problem, we have two astronauts, whose masses are:

While the separation between the astronauts is
r = 2 m
Substituting into the equation, we can find the gravitational force between the two astronauts:

Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly