The initial height of the first body is given by:

where
g is the gravitational acceleration
t is the time it takes for the body to reach the ground
Substituting t=1 s, we find

The second body takes takes t=2 s to reach the ground, so it was located at an initial height of

The second body started its fall 1 second before the first body, therefore when the second body started its fall, the first body was located at its initial height, i.e. at 4.9 m from the ground.
Answer: A and C (i took the test)
Explanation: Hope this helps:)
Answer:
The car stops after 32.58 m.
Explanation:
t = Time taken for the car to stop
u = Initial velocity = 20 m/s
v = Final velocity = 0
s = Displacement
a = Acceleration = -6 m/s²
Time taken by the car to stop

Total Time taken by the car to stop is 0.5+3.33 = 3.83 s

The car stops after 32.58 m.
Distance between car and obstacle is 50-32.58 = 17.42 m
Answer:
The magnitude of the magnetic field halfway between the wires is 3.0 x 10⁻⁵ T.
Explanation:
Given;
distance half way between the parallel wires, r = ¹/₂ (40 cm) = 20 cm = 0.2 m
current carried in opposite direction, I₁ and I₂ = 10 A and 20 A respectively
The magnitude of the magnetic field halfway between the wires can be calculated as;

where;
B is magnitude of the magnetic field halfway between the wires
I₁ is current in the first wire
I₂ is current the second wire
μ₀ is permeability of free space
r is distance half way between the wires

Therefore, the magnitude of the magnetic field halfway between the wires is 3.0 x 10⁻⁵ T.