1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Karolina [17]
3 years ago
13

How to find work without force

Physics
2 answers:
nikklg [1K]3 years ago
6 0
I’m not sure what variables you are given, but since work = force x distance, and force = mass x acceleration, you could use work = mass x acceleration x distance
True [87]3 years ago
3 0
You can use Power = Energy/time for problems if that is what you asking for.
You might be interested in
Which region on the map has the highest risk of future landslides?​​​
vladimir2022 [97]

Answer:

Reigon 1

Explanation:

It has the higest rate of landslides currently

4 0
3 years ago
A rocket starting from its launch pad is subjected to a uniform acceleration of 100 meters/second2. Determine the time needed to
gizmo_the_mogwai [7]

Answer:

10s

Explanation:

Acceleration is a measure of a rate of change of velocity, or in other words, a measure of how quickly the velocity is changing.

If acceleration is constant, then the velocity is changing by a constant amount.

With an acceleration of 100 m/s^2, starting from the launching pad (and thus, an initial velocity of zero), we can calculate how long it will take to reach a final velocity of 1000m/s with the following formula:

v=at+v_o where "v" is the final velocity at some later time "t", "a" is the constant acceleration, and "v" sub-zero is the initial velocity.

v=at+v_o

(1000\text{ [m/s]})=(100 \text{ } [\text{m/s}^2] )t+(0\text{ [m/s]})

1000\text{ [m/s]}=100 \text{ } [\text{m/s}^2] *t

\dfrac{1000\text{ [m/s]}}{100 \text{ } [\text{m/s}^2]}=\dfrac{100 \text{ } [\text{m/s}^2] *t}{100 \text{ } [\text{m/s}^2]}

10\text{ [s]}=t

So, it will take 10 seconds for the rocket to reach 1000m/s when starting from the launching pad, with a constant velocity of 100m/s^2.

<u>Verification:</u>

In this situation, it is quick to verify that 10 seconds is correct by looking at what the velocities will be each second.

Recognizing that the acceleration is a=\dfrac{100 [\frac{m}{s}]}{1[s]}, the velocity increases by 100 units [m/s] every second.

At time 0[s], the velocity is 0[m/s]

At time 1[s], the velocity is 100[m/s]

At time 2[s], the velocity is 200[m/s]

At time 3[s], the velocity is 300[m/s]

At time 4[s], the velocity is 400[m/s]

At time 5[s], the velocity is 500[m/s]

At time 6[s], the velocity is 600[m/s]

At time 7[s], the velocity is 700[m/s]

At time 8[s], the velocity is 800[m/s]

At time 9[s], the velocity is 900[m/s]

At time 10[s], the velocity is 1000[m/s]

So, indeed, after 10 seconds, the velocity reaches 1000 m/s

5 0
2 years ago
The temperature of a black body is 500 and its radiation is of wavelength 600 . If the number of oscillators with energy is 100
stiks02 [169]

Answer: An equation is missing in your question below is the missing equation

a) ≈ 8396

b) 150 nm/k

Explanation:

<u>A) Determine the number of Oscillators in the black body</u>

number of oscillators = 8395

attached below is the detailed solution

<u>b) determine the peak wavelength of the black body </u>

Black body temperature = 20,000 K

applying Wien's law / formula

λmax = b / T  ------ ( 1 )

T = 20,000 K

b = 3 * 10^6 nm

∴  λmax = 150 nm/k

4 0
2 years ago
How could you dissolve more solid solute in a saturated solution in a liquid solvent
tankabanditka [31]
If you saturated the solid it will turn into liquid and soon become an air
3 0
3 years ago
a stone is projected vertically up from the top of a tower 73.5m with velocity 24.5 m/s . find the time taken by the stone to re
hoa [83]

The stone's altitude at time t is given by

y=73.5\,\mathrm m+\left(24.5\dfrac{\rm m}{\rm s}\right)t-\dfrac g2t^2

where g=9.80\dfrac{\rm m}{\mathrm s^2} is the acceleration due to gravity. The stone reaches the ground when y=0:

0=73.5\,\mathrm m+\left(24.5\dfrac{\rm m}{\rm s}\right)t-\dfrac g2t^2\implies t=7.11\,\rm s

6 0
3 years ago
Other questions:
  • All the mass we ever encounter is positive - nothing weighs less than zero. What makes us think charge is different that there a
    9·1 answer
  • 9a driver has a reaction time of 0.50 s , and the maximum deceleration of her car is 6.0 m/s2 . she is driving at 20 m/s when su
    5·1 answer
  • What can experiments tell us that other studies cant
    12·1 answer
  • What is space time?​
    6·1 answer
  • The Buddhist teaching of ______________ asserts that everything is in a perpetual state of flux (always changing), yet we imagin
    12·1 answer
  • What would decrease the resistance of wires carrying an electric current
    5·2 answers
  • Does voltage remain the same throughout a series circuit
    6·2 answers
  • What does an electric current produce
    13·1 answer
  • True or False. Can Metalloids conduct electricity under certain conditions?
    15·1 answer
  • Two blocks of masses 1.0 kg and 2.0 kg, respectively, are pushed by a constant applied force F across a horizontal frictionless
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!