Highest energy photon absorbed: 
Explanation:
An atom is said to be (positively) ionised when it absorbs a photon, and as a consequence, an electron becomes energetic enough to escape the atom, leaving an excess of positive charge behind.
In order for the electron to escape, the energy of the absorbed photon must be exactly equal to the (negative) energy of the level in which the electron lies.
For an hydrogen atom, the energy levels are given by

where this energy is measured in electronvolts, and n is the number of the energy level.
Since the energy is negative, this means that the electron which requires most energy is the one lying in the ground state (n=1). Therefore, for an electron in the ground state, the most energy that can be absorbed from the incoming photon is

Converting into Joules, this is equal to

Learn more about hydrogen atom:
brainly.com/question/2757829
#LearnwithBrainly
<span>Ohm's law deals with the relation between
voltage and current in an ideal conductor. It states that: Potential difference
across a conductor is proportional to the current that pass through it. It is
expressed as V=IR. Therefore, the correct answer is option B, the voltage would increase as well.</span>
Answer:
a.
b. 
Explanation:
<u>Given:</u>
- Velocity of the particle, v(t) = 3 cos(mt) = 3 cos (0.5t) .
<h2>
(a):</h2>
The acceleration of the particle at a time is defined as the rate of change of velocity of the particle at that time.

At time t = 3 seconds,

<u>Note</u>:<em> The arguments of the sine is calculated in unit of radian and not in degree.</em>
<h2>
(b):</h2>
The velocity of the particle at some is defined as the rate of change of the position of the particle.

For the time interval of 2 seconds,

The term of the left is the displacement of the particle in time interval of 2 seconds, therefore,

It is the displacement of the particle in 2 seconds.
Answer:
They don’t ‘represent’ anything, they are properties of the wave.
Depending on the type of wave, we experience them as various phenomena. For example, with a sound wave we experience frequency (or wavelength, which is just another way to describe the same property) as the pitch of the sound. We experience amplitude as the loudness of the sound, although due to the characteristics of the ear, frequency also effects perceived loudness.
If the wave is a light wave, we experience the frequency (wavelength) as the colour of the light, and the amplitude as the brightness of the light.
For many waves, we don’t perceive them at all (e.g. radio waves).
For ocean waves, frequency is the time for each peak or trough to reach us, and amplitude is how tall the wave is.
Sound and water waves are longitudinal waves, they require a medium to travel through and occilate particles 90 degrees to the wave motion
Light is a transverse wave. It doesnt require a medium to travel through.
All three reflect, refract and diffract
Light is difficult to think of because it acts in ways which waves cannot explain in some cirumstances. It acts like a particle (called photons) in some conditions, but acts like a normal sound or water wave does in others. Try not to get too caught up in light being a wave or a particle because even physists dont know how to explain it yet.