Answer:
NO would form 65.7 g.
H₂O would form 59.13 g.
Explanation:
Given data:
Moles of NH₃ = 2.19
Moles of O₂ = 4.93
Mass of NO produced = ?
Mass of produced H₂O = ?
Solution:
First of all we will write the balance chemical equation,
4NH₃ + 5O₂ → 4NO + 6H₂O
Now we will compare the moles of NO and H₂O with ammonia from balanced chemical equation:
NH₃ : NO NH₃ : H₂O
4 : 4 4 : 6
2.19 : 2.19 2.19 : 6/4 × 2.19 = 3.285 mol
Now we will compare the moles of NO and H₂O with oxygen from balanced chemical equation:
O₂ : NO O₂ : H₂O
5 : 4 5 : 6
4.93 : 4/5×4.93 = 3.944 mol 4.93 : 6/5 × 4.93 = 5.916 mol
we can see that moles of water and nitrogen monoxide produced from the ammonia are less, so ammonia will be limiting reactant and will limit the product yield.
Mass of water = number of moles × molar mass
Mass of water = 3.285 mol × 18 g/mol
Mass of water = 59.13 g
Mass of nitrogen monoxide = number of moles × molar mass
Mass of nitrogen monoxide = 2.19 mol × 30 g/mol
Mass of nitrogen monoxide = 65.7 g
Answer:
The answer is B. Compressions and rarefactions.
Explanation:
- <u><em>Longitudinal sound waves are waves of alternating pressure deviations from the equilibrium pressure, causing local regions of compression and rarefaction.</em></u>
Answer:
1 Atm
Explanation:
Dalton's law
The total pressure is 3 Atm so all you have to do is subtract the other partial pressures from 3
Answer:
0.01134kg
Explanation:
You divide by 1000 to get the kg
Hey there!
Molar mass C2H6O = 46.0684 g/mol
Number of moles:
n = mass of solute / molar mass
n = 70.6 / 46.0684
n = 1.532 moles
Therefore:
M = number of moles / volume ( L )
M = 1.532 / 2.25
= 0.680 M
Hope that helps!