Answer:
Molecularity of the rate determining step = 2
Explanation:
Step 1 (slow): H₂O₂ + I⁻ -----> H₂O + OI⁻
Step 2 (fast): H₂O₂ + OI⁻ -----> H₂O + O₂ + I⁻
The rate determining step in a reaction mechanism is also considered as slowest step.
Slowest step is also considered its highest activation energy in energy profile diagram.
In this case intermediate (IO⁻) is formed.
Step 1 considered as a slowest step.
So, Rate = K [H₂O₂][I⁻]
Molecularity = 2
Explanation:
The Holy Roman Empire (Latin: Sacrum Imperium Romanum; German: Heiliges Römisches Reich), also termed as the First Reich, was a multi-ethnic complex of territories in Western and Central Europe that developed during the Early Middle Ages and continued until its dissolution in 1806 during the Napoleonic Wars.[6] The largest territory of the empire after 962 was the Kingdom of Germany, though it also included the neighboring Kingdom of Bohemia and Kingdom of Italy, plus numerous other territories, and soon after the Kingdom of Burgundy was added. However, while by the end of the 15th century the Empire was still in theory composed of three major blocks – Italy, Germany, and Burgundy – in practice only the Kingdom of Germany remained, with the Burgundian territories lost to France and the Italian territories, ignored in the Imperial Reform, although formally part of the Empire, were splintered into numerous de facto independent territorial entities.[7][8][9][10] The external borders of the Empire did not change noticeably from the Peace of Westphalia – which acknowledged the exclusion of Switzerland and the Northern Netherlands, and the French protectorate over Alsace – to the dissolution of the Empire. By then, it largely contained only German-speaking territories, plus the Kingdom of Bohemia, the southern Netherlands and lands of Carniola. At the conclusion of the Napoleonic Wars in 1815, most of the Holy Roman Empire was included in the German Confederation.
in yr language:
Ang Holy Roman Empire (Latin: Sacrum Imperium Romanum; German: Heiliges Römisches Reich), na tinawag din bilang First Reich, ay isang multi-etniko na kumplikado ng mga teritoryo sa Kanluran at Gitnang Europa na d
Kelvin doesn't have negativity iim pretty sure
Answer:- Formula of the hydrate is
and it's name is Iron(III)sulfate pentahydrate.
Solution:- As per the given information, there is 18.4% water in the hydrate. If we assume the mass of the hydrate as 100 grams then there would be 18.4 grams of water and 81.6 grams of Iron(III)sulfate present in the hydrate.
Molar mass for Iron(III)sulfate is 399.88 gram per mol and the molar mass for water is 18.02 gram per mol.
We will calculate the moles of Iron(III)sulfate and water present in the compound on dividing their grams by their molar masses as:

= 

= 
Now, the next step is to calculate the mol ratio and for this we divide the moles of each by the least one of them means whose moles are less. Here, the moles of Iron(III)sulfate are less than moles of water. So, we divide the moles of each by 0.204.
= 1
= 5
There is 1:5 mol ratio between Iron(III)sulfate and water. So, the formula of the hydrate is
and the name of the hydrate is Iron(III)sulfate pentahydrate.