Answer:
The child will take 5.952 seconds to travel from the top of the hill to the bottom.
Explanation:
Given that the child accelerates uniformly and that both initial (
) and final speeds (
), measured in meters per second, and acceleration (
), measured in meters per square second, are known, we proceed to use the following kinematic equation to determine the time taken to travel from the top of the hill to the bottom (
), measured in seconds, is:
(1)
If we know that
,
and
, then the time taken is:

The child will take 5.952 seconds to travel from the top of the hill to the bottom.
Answer:
(E)56.0 m/s
Explanation:
Height =h=-160 m
Because the wallet moving in downward direction
Time=t=7 s
Final speed of wallet=v=0
We have to find the speed of helicopter ascending at the moment when the passenger let go of the wallet.

Where 
Substitute the values



Option (E) is true
The density of the nugget is
and is made of gold
Explanation:
The density of an object can be calculated as

where
d is the density
m is the mass
V is the volume of the object
We have to note that density of an object actually depends on the material the object is made of (therefore, two objects made of the same material can have different mass and different volume, but they have same density).
For the nugget in this problem, we have:
mass: m = 38 g
volume: 
So, its density is

And by looking at the table, we see that this value corresponds approximately to the density of gold, so the nugget is made of gold.
Learn more about density:
brainly.com/question/5055270
brainly.com/question/8441651
#LearnwithBrainly
Answer:
Apparent depth = 45 cm
Explanation:
The refractive index of water in a pool, n = 4/3
Real depth, d = 60 cm
We need to find its apparent depth when viewed vertically through air. The ratio of real depth to the apparent depth is equal to the refractive index of the material. Let the apparent depth is d'. So,

So, the apparent depth is 45 cm.