1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tankabanditka [31]
2 years ago
11

Calculate the change of entropy of 2 kg of air when its temperature increases from 400 K to 500 K at constant pressure equal to

300 kPa.
Engineering
1 answer:
harkovskaia [24]2 years ago
4 0

Answer:

0.45516

Explanation:

ENTROPY : Entropy is a measure of molecular disorder it is denoted by S. Entropy is also measured in terms of thermal energy and temperature it is equal to thermal energy per unit temperature.

from the table S₁=1.99194 KJ/kg.k (at 400k)

from the table S₂=2.21952 KJ/kg.k (at 500k)

so total entropy change is given by =m (S₂-S₁)

=2(2.21952-1.99194)

=0.45516

                       

You might be interested in
A square-thread power screw is used to raise or lower the basketball board in a gym, the weight of which is W = 100kg. See the f
KIM [24]

Answer:

power = 49.95 W

and it is self locking screw

Explanation:

given data

weight W = 100 kg = 1000 N

diameter d = 20mm

pitch p = 2mm

friction coefficient of steel f = 0.1

Gravity constant is g = 10 N/kg

solution

we know T is

T = w tan(α + φ ) \frac{dm}{2}     ...................1

here dm is = do - 0.5 P

dm = 20 - 1

dm = 19 mm

and

tan(α) = \frac{L}{\pi dm}      ...............2

here lead L = n × p

so tan(α) = \frac{2\times 2}{\pi 19}

α = 3.83°  

and

f = 0.1

so tanφ = 0.1

so that φ = 5.71°

and  now we will put all value in equation 1 we get

T = 1000 × tan(3.83 + 5.71 ) \frac{19\times 10^{-3}}{2}  

T = 1.59 Nm

so

power = \frac{2\pi N \ T }{60}     .................3

put here value

power = \frac{2\pi \times 300\times 1.59}{60}

power = 49.95 W

and

as φ > α

so it is self locking screw

 

8 0
3 years ago
The critical resolved shear stress for a metal is 39 MPa. Determine the maximum possible yield strength (in MPa) for a single cr
damaskus [11]

Answer:

78 MPa

Explanation:

Given that the critical resolved shear stress for a metal is 39 MPa, the maximum possible yield strength for a single crystal of this metal is twice the critical resolved shear stress for the metal. The maximum yield yield strength for a single crystal of this metal that is pulled in tension (\sigma_y) is given as:

\sigma_y=2*critical\ resolved\ shear\ stress(\tau_{css})\\\\\sigma_y=2*\tau_{css}\\\\\sigma_y=2*39\\\\\sigma_y=78\ MPa

4 0
2 years ago
A long rod of 60-mm diameter and thermophysical properties rho= 8000 kg/m3, c= 500 J/kg·K, and k= 50 W/m·K is initially at a uni
Dvinal [7]

Answer:

Tc =    = 424.85 K

Explanation:

Data given:

D = 60 mm = 0.06 m

\rho = 8000 kg/m^3

k = 50 w/m . k

c = 500 j/kg.k

h_{\infty} = 1000 w/m^2

t_{\infity} = 750 k

t_w = 500 K

surface area = As = \pi dL

\frac{As}{L} = \pi D = \pi \timeS 0.06

HEAT FLOW Q  is

Q = h_{\infty} As (T_[\infty} - Tw)

 = 1000 \pi\times 0.06 (750-500)

  = 47123.88 w per unit length of rod

volumetric heat rate

q = \frac{Q}{LAs}

  = \frac{47123.88}{\frac{\pi}{4} D^2 \times 1}

q = 1.66\times 10^{7} w/m^3

Tc = \frac{- qR^2}{4K} + Tw

= \frac{ - 1.67\times 10^7 \times (\frac{0.06}{2})^2}{4\times 56} +  500

   = 424.85 K

7 0
3 years ago
A pump operating at steady state receives liquid water at 20°C, 100 kPa with a mass flow rate of 53 kg/min. The pressure of the
VARVARA [1.3K]

Answer:

Input Power = 6.341 KW

Explanation:

First, we need to calculate enthalpy of the water at inlet and exit state.

At inlet, water is at 20° C and 100 KPa. Under these conditions from saturated water table:

Since the water is in compresses liquid state and the data is not available in compressed liquid chart. Therefore, we use approximation:

h₁ = hf at 20° C = 83.915 KJ/kg

s₁ = sf at 20° C = 0.2965 KJ/kg.k

At the exit state,

P₂ = 5 M Pa

s₂ = s₁ = 0.2965 K J / kg.k    (Isentropic Process)

Since Sg at 5 M Pa is greater than s₂. Therefore, water is in compresses liquid state. Therefore, from compressed liquid property table:

h₂ = 88.94 KJ/kg

Now, the total work done by the pump can be calculated as:

Pump Work = W = (Mass Flow Rate)(h₂ - h₁)

W = (53 kg/min)(1 min/60 sec)(88.94 KJ/kg - 83.915 KJ/kg)

W = 4.438 KW

The efficiency of pump is given as:

efficiency = η = Pump Work/Input Power

Input Power = W/η

Input Power = 4.438 KW/0.7

<u>Input Power = 6.341 KW</u>

5 0
3 years ago
Test de evaluare
ivolga24 [154]
C why it’s c bc they I just got it right
7 0
2 years ago
Other questions:
  • Name two types of Transformers.
    6·1 answer
  • Your new mobile phone business is now approaching its first anniversary and you are able to step back and finally take a deep br
    8·1 answer
  • Practice Problem: Large-Particle CompositesThe mechanical properties of a metal may be improved by incorporating fine particles
    5·1 answer
  • Block B starts from rest, block A moves with a constant acceleration, and slider block C moves to the right with a constant acce
    11·1 answer
  • Tim was recently released from his last job. He was very rigid and would not change a product design once he began a project. He
    7·1 answer
  • A three-point bending test was performed on an aluminum oxide specimen having a circular cross section of radius 5.6 mm; the spe
    8·1 answer
  • How would your priorities change if the fine on the library book was $10 a day?
    14·1 answer
  • Suppose you have a Y-connected balanced three-phase load which consumes 200 kW with pf of 0.707 lagging. The line-to-line voltag
    14·1 answer
  • A composite shaft with length L = 46 in is made by fitting an aluminum sleeve (Ga = 5 x 10^3 ksi) over a
    14·1 answer
  • a storage tank contains liquid with a density of 0.0361 lbs per cubic inch. the height of liquid in the tank is 168 feet. what i
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!