Answer:
The frequencies are 
Explanation:
From the question we are told that
The speed of the wave is 
The length of vibrating clothesline is 
Generally the fundamental frequency is mathematically represented as

=> 
=> 
Now this other frequencies of vibration experience by the clotheslines are know as harmonics and they are obtained by integer multiple of the fundamental frequency
So
The frequencies are mathematically represented as

=> 
Where n = 1, 2, 3 ....
y = 75.9 m
Explanation:
y = -(1/2)gt^2 + v0yt + y0
If we put the origin of our coordinate system at the point where a body is launched, then y0 = 0.
y = -(1/2)(9.8 m/s^2)(3 s)^2 + (40 m/s)(3 s)
= -44.1 m + 120 m
= 75.9
Answer:
2
Explanation:
A rigid body is not elastic.
i.e. it does not change shape.
Answer:
5.72 s
Explanation:
From Newton's law, F = ma
The East is +ve direction, Hence,
F = +8930 N
m = 2290 kg
a = ?
8930 = 2290 × a
a = 8930/2290 = 3.90 m/s²
So, we will find the time it takes the car to stop using the equations of motion
a = 3.90 m/s²
u = initial velocity of the car = - 22.3 m/s (the velocity is to the west)
v = final velocity of the car = 0 m/s (since the car comes to rest)
t = time taken for the car to come to rest = ?
v = u + at
0 = - 22.3 + (3.90)(t)
3.9t = 22.3
t = 5.72 s
Answer:
<h2>33.53m/s</h2>
Explanation:
Given the maximum speed limit on interstate 10 as 75 miles per hour, to get the speed in meter per seconds, we need to convert the given speed to meter per seconds.
Using the conversion 1 mile = 1609.34m and 1 hour = 3600 seconds
75 miles perhour = 75miles/1 hour
75miles/1 hour (in m/s) = 75miles*1609.34m* 1 hour/1mile * 1 hour * 3600s *
= 75 *1609.34m* 1 /1 * 1 * 3600s
= 120,700.5m/3600s
= 33.53m/s
<em>Hence the maximum speed limit on interstate 10 in metre per seconds is 33.53m/s</em>