Answer:
The final velocity of the vehicle is 10.39 m/s.
Explanation:
Given;
acceleration of the vehicle, a = 2.7 m/s²
distance moved by the vehicle, d = 20 m
The final velocity of the vehicle is calculated using the following kinematic equation;
v² = u² + 2ah
v² = 0 + 2 x 2.7 x 20
v² = 108
v = √108
v = 10.39 m/s
Therefore, the final velocity of the vehicle is 10.39 m/s.
Answer:
The kinetic energy of the merry-goround after 3.62 s is 544J
Explanation:
Given :
Weight w = 745 N
Radius r = 1.45 m
Force = 56.3 N
To Find:
The kinetic energy of the merry-go round after 3.62 = ?
Solution:
Step 1: Finding the Mass of merry-go-round


m = 76.02 kg
Step 2: Finding the Moment of Inertia of solid cylinder
Moment of Inertia of solid cylinder I =
Substituting the values
Moment of Inertia of solid cylinder I
=>
=> 
=> 
Step 3: Finding the Torque applied T
Torque applied T =
Substituting the values
T = 
T = 81.635 N.m
Step 4: Finding the Angular acceleration
Angular acceleration ,
Substituting the values,


Step 4: Finding the Final angular velocity
Final angular velocity ,
Substituting the values,


Now KE (100% rotational) after 3.62s is:
KE = 
KE =
KE = 544J
Answer:
The atmosphere has 4 layers: the troposphere that we live in near the surface of the earth; the stratosphere that houses the ozone layer; the mesosphere, a colder and lower density layer with about 0.1% of the atmosphere; and the thermosphere, the top layer, where the air is hot but very thin.
Explanation:
A. attract each other.
The Law of Universal Gravitation discusses the phenomenon of gravity. Remember that gravity is the force that keeps us on Earth; the Earth pulls us down, and our bodies pull back. Gravity is the force of attraction, so the correct answer is a).