Answer:
You'll experience a grater deviation
Explanation:
<em>You'll experience a greater deviation in your measurements, meaning your measures will have a bigger difference between them, and the greater these deviations the less accurate will be the measuring.</em> This happens mainly because you're not replicating the measurement with the exact same conditions, in one of them you'll have an extra mass from the water.
I hope you find this information useful and interesting! Good luck!
1. B
2. H
3. G
4. I
5. D
6. C
7. A
8. F
9. E
I am not sure weather it is correct but I wrote what I know
<h3>
Answer:</h3>
3.01 × 10²⁵ molecules H₂O
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
50.0 mol H₂O
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
<u />
= 3.011 × 10²⁵ molecules H₂O
<u>Step 4: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
3.011 × 10²⁵ molecules H₂O ≈ 3.01 × 10²⁵ molecules H₂O
One mole of a substance is defined by Avogadro as consisting of 6.022 x 1023 atoms. This is Avogadro's number. To calculate the number of atoms in two moles of sodium, use dimensional analysis. 2.0 moles Na x 6.022⋅1023g1mol=1.20⋅1024 atoms of Na
Answer:
The answer is calories.
The average human being needs 2000 calories for them to be energized.