Answer:
Saturated solution
We should raise the temperature to increase the amount of glucose in the solution without adding more glucose.
Explanation:
Step 1: Calculate the mass of water
The density of water at 30°C is 0.996 g/mL. We use this data to calculate the mass corresponding to 400 mL.

Step 2: Calculate the mass of glucose per 100 g of water
550 g of glucose were added to 398 g of water. Let's calculate the mass of glucose per 100 g of water.

Step 3: Classify the solution
The solubility represents the maximum amount of solute that can be dissolved per 100 g of water. Since the solubility of glucose is 125 g Glucose/100 g of water and we attempt to dissolve 138 g of Glucose/100 g of water, some of the Glucose will not be dissolved. The solution will have the maximum amount of solute possible so it would be saturated. We could increase the amount of glucose in the solution by raising the temperature to increase the solubility of glucose in water.
Answer: the boiling point is = 137.325°C
Explanation:
From the formula: ∆Tb= Kb*m
From the question, Kb= 0.95, m= 27.5, T1= 111.2°C
Substitute into ∆Tb= Kb*m
∆Tb= 0.95*27.5= 26.125
∆Tb= T2-T1
Hence
T2- 111.2=26.125
T2= 26.125+ 111.2= 137.325°C
The narrator is a female
Hope this helps
The first compound C6H12 is cyclohexane and the other compound C6H6 is benzene. They are both aromatic compounds. Cyclohexane does not have double bonds in its ring while benzene has three double bonds in its ring. This is why the formula for cyclohexane contains 12 carbon atoms while benzene only has 6.