B. The moon is located between the Sun and Earth
Given :
Initial speed of car A is 15 m/s and initial speed of car B is zero.
Final speed of car A is zero and final speed of car B is 10 m/s.
To Find :
What fraction of the initial kinetic energy is lost in the collision.
Solution :
Initial kinetic energy is :

Final kinetic energy is :

Now, fraction of initial kinetic energy loss is :

Therefore, fraction of initial kinetic energy loss in the collision is 1.25 .
A baseball will curve better on the flat plain if it is higher than sea level but low elevation.
Hope this helped!
Answer:
Part a)

Part B)

Part C)

Explanation:
Part A)
As we know that ball is hanging from the top and its angle with the vertical is 20 degree
so we will have






Part B)
Here we can use energy theorem to find the distance that it will move




Part C)
At terminal speed condition we know that




To solve this problem we will apply the concepts related to wavelength, as well as Rayleigh's Criterion or Optical resolution, the optical limit due to diffraction can be calculated empirically from the following relationship,

Here,
= Wavelength
d= Diameter of aperture
= Angular resolution or diffraction angle
Our values are given as,

The frequency of the sound is 
The speed of the sound is 
The wavelength of the sound is

Here,
v = Velocity of the wave
f = Frequency
Replacing,


The diffraction condition is then,

Replacing,

d = 0.24 m
Therefore the diameter should be 0.24m