Midway between the two<span> solstices we have equinoxes – Vernal Equinox in March and </span>Autumnal Equinox<span> in September. ... After this time, the Earth's northern axis is tilted </span>more<span> and </span>more<span>towards ... Then on </span>Summer Solstice<span>, the Sun will reach its farthest north position in the sky</span>
Because the gravitational force, which points downward, is perfectly balanced by the normal reaction of the floor of the bowling lane, which points upward. The two forces are equal in magnitude, so the net force acting vertically on the bowling ball is zero, therefore there is no acceleration along this direction. Moreover, since the ball is moving in the horizontal direction, the gravitational force has no component along this direction, so it does not change the velocity of the ball.
1)
p = 2.4 * 10^5 Pa
T = 18° C + 273.15 = 291.15 k
r = 0.25 m => V = [4/3]π(r^3) = [4/3]π(0.25m)^3 = 0.06545 m^3 = 65.45 L
Use ideal gas equation: pV = nRT => n = pV / RT = [2.4*10^5 Pa * 0.06545 m^3] / [8.31 J/k*mol * 291.15k] = 6.492 mol
Avogadro number = 1 mol = 6.022 * 10^23 atoms
Number of atoms = 6.492 mol * 6.022 *10^23 atom/mol = 39.097 * 10^23 atoms = 3.91 * 10^24 atoms
2) Double atoms => double volume
V2 / V1 = r2 ^3 / r1/3
2 = r2 ^3 / r1 ^3 => r2 ^3 = 2* r1 ^3
r2 = [∛2]r1
The factor is ∛2
Answer:
a) 2cm³
b) 100 g/cm³
Explanation:
a- 9-7= 2cm³
b- 200 divided by 2= 100 g/cm³
Hope this helps... correct me if i'm wrong
Answer:
Wavelength of the sound wave that reaches your ear is 1.15 m
Explanation:
The speed of the wave in string is

where T= 200 N is tension in the string ,
=1.0 g/m is the linear mass density


Wavelength of the wave in the string is

The frequency is

The required wavelength pf the sound wave that reaches the ear is( take velocity of air v=344 m/s)
