Answer:
1.5e+8 atoms of Bismuth.
Explanation:
We need to calculate the <em>ratio</em> of the diameter of a biscuit respect to the diameter of the atom of bismuth (Bi):

For this, it is necessary to know the values in meters for any of these diameters:


Having all this information, we can proceed to calculate the diameters for the biscuit and the atom in meters.
<h3>Diameter of an atom of Bismuth(Bi) in meters</h3>
1 atom of Bismuth = 320pm in diameter.

<h3>Diameter of a biscuit in meters</h3>

<h3>Resulting Ratio</h3>
How many times is the diameter of an atom of Bismuth contained in the diameter of the biscuit? The answer is the ratio described above, that is, the ratio of the diameter of the biscuit respect to the diameter of the atom of Bismuth:





In other words, there are 1.5e+8 diameters of atoms of Bismuth in the diameter of the biscuit in question or simply, it is needed to put 1.5e+8 atoms of Bismuth to span the diameter of a biscuit in a line.
Option C. The object is returning to the start at a constant speed.
<h3>
Data points of the Position vs Time graph</h3>
The following data points will be used to determine the motion of the object.
<u>Position Time</u>
12 4
10 6
2 8
0 10
From the data above, the position of the object is decreasing towards zero or start point.
Thus, the object is returning to the start at a constant speed.
Learn more about position here: brainly.com/question/2364404
#SPJ1
Answer:
0!
Explanation:
- You need to search your pKa values for Asn (2.14, 8.75), Gly (2.35, 9.78) and Leu(2.33, 9.74), the first value corresponding to -COOH, the second to -NH3 (a third value would correspond to an R group, but in this case that does not apply), and we'll build a table to find the charges for your possible dissociated groups at indicated pH (7), we need to remember that having a pKa lower than the pH will give us a negative charge, having a pKa bigger than pH will give us a positive charge:
-COOH -NH3
pH 7------------------------------------------------------
Asn - +
Gly - +
Leu - +
- Now that we have our table we'll sketch our peptide's structure:
<em>HN-Asn-Gly-Leu-COOH</em>
This will allow us to see what groups will be free to react to the pH's value, and which groups are not reacting to pH because are forming the bond between amino acids. In this particular example only -NH group in Ans and -COOH in Leu are exposed to pH, we'll look for these charges in the table and add them to find the net charge:
+1 (HN-Asn)
-1 (Leu-COOH)
=0
The net charge is 0!
I hope you find this information useful and interesting! Good luck!
Well, an independent variable ids the thing that stays the same and a dependent variable is the thing that changes.