Answer:
K = 80.75 MeV
Explanation:
To calculate the kinetic energy of the antiproton we need to use conservation of energy:

<em>where
: is the photon energy,
: are the rest energies of the proton and the antiproton, respectively, equals to m₀c²,
: are the kinetic energies of the proton and the antiproton, respectively, c: speed of light, and m₀: rest mass.</em>
Therefore the kinetic energy of the antiproton is:
<u>The proton mass is equal to the antiproton mass, so</u>:

Hence, the kinetic energy of the antiproton is 80.75 MeV.
I hope it helps you!
Answer:
x = 727.5 km
Explanation:
With the conditions given using trigonometry, we can find the tangent
tan θ = CO / CA
With CO the opposite leg and CE is the adjacent leg which is the distance from the Tierral to Sun
D =150 10⁶ km (1000m / 1 km)
D = 150 10⁹ m.
We must take the given angle to radians.
1º = 3600 arc s
π rad = 180º
θ = 1 arc s (1º / 3600 s arc) (pi rad / 180º) =
θ = 4.85 10⁻⁶ rad
That angle is extremely small, so we can approximate the tangent to the angle
θ = x / D
x = θ D
x = 4.85 10-6 150 109
x = 727.5 103 m
x = 727.5 km
The Sun is 149.6 million kilometers from the earth.
There are 8760 hours in a year.
876000 km are traveled in a year
It would take 170.776 years to reach the sun, or 171 years rather
Answer:
v₀ = 16.55 m/s
Explanation:
This motion of the ball can be modeled as a projectile motion with following data:
R = Range of Projectile = 27.5 m
θ = Launch Angle = 50°
g = acceleration due to gravity = 9.81 m/s²
v₀ = Initial Speed of Ball = ?
Therefore, using formula for range of projectile, we have:

<u>v₀ = 16.55 m/s</u>