Answer:
1470 W
Explanation:
Power: This can be defined as the rate at which work is done or energy is used up. The S.I unit of power is Watt (W).
The expression for power is given as,
P = Energy/time
P = mgh/t ...................... Equation 1
Where P = power, m = mass, h = height, t = time, g = acceleration due to gravity.
Given: m = 75 kg, g =9.8 m/s², h = 1 m, t = 1 s.
Substitute into equation 1
P = (75×1×9.8)/1
P = 735 W.
From the above,
1 hp = 735 W
2 hp = (2×735) W
2 hp = 1470 W.
Hence 2 hp = 1470 W
The answer is :78 I think
Answer:
0.3 m
Explanation:
Initially, the package has both gravitational potential energy and kinetic energy. The spring has elastic energy. After the package is brought to rest, all the energy is stored in the spring.
Initial energy = final energy
mgh + ½ mv² + ½ kx₁² = ½ kx₂²
Given:
m = 50 kg
g = 9.8 m/s²
h = 8 sin 20º m
v = 2 m/s
k = 30000 N/m
x₁ = 0.05 m
(50)(9.8)(8 sin 20) + ½ (50)(2)² + ½ (30000)(0.05)² = ½ (30000)x₂²
x₂ ≈ 0.314 m
So the spring is compressed 0.314 m from it's natural length. However, we're asked to find the additional deformation from the original 50mm.
x₂ − x₁
0.314 m − 0.05 m
0.264 m
Rounding to 1 sig-fig, the spring is compressed an additional 0.3 meters.
Answer:
The the analysis for the free fall part should be done under the constant acceleration.
Explanation:
In the given problem, the jumper is falling under the free fall. Since, no external force is acting on the body therefore, the fall will be under the action gravity only. also, the acceleration due to gravity is always constant.
Therefore, the the analysis for the free fall part should be done under the constant acceleration.