Answer:b. gravitational, kinetic, thermal
Explanation:
The above explains the mechanism of the core forming process on earth/planet.
It is believed that this process might has contributed significantly to a planet's early stages heating. The time when these core-forming event happened is thought to have been mainly completed very early when Earth was young . The type of this event rather than it being seen as a single catastrophic event, it is likely to have been as a result of contractions on the earth severally.
The addition of partially differentiated material from another giant impact the rate of this spasm , and it increases each time the planet's mass is to increased.
This is a little on the history of planetary evolution.
Answer:
single replacement reaction
Explanation:
This is a kind of single replacement reaction where you switch either cations or anions. Here you switched Ca for H and produced Cacl2 and H2 gas by itself.
I believe the correct answer from the choices listed above is option A. <span>A forward reaction in which adding heat decreases product formation is exothermic, while a forward reaction in which adding heat increases product formation is endothermic. Exothermic would mean that heat is being released by the process while the opposite is called endothermic in which it absorbs heat.</span>
Assuming an ebullioscopic constant of 0.512 °C/m for the water, If you add 30.0g of salt to 3.75kg of water, the boiling-point elevation will be 0.140 °C and the boiling-point of the solution will be 100.14 °C.
<h3>What is the boiling-point elevation?</h3>
Boiling-point elevation describes the phenomenon that the boiling point of a liquid will be higher when another compound is added, meaning that a solution has a higher boiling point than a pure solvent.
- Step 1: Calculate the molality of the solution.
We will use the definition of molality.
b = mass solute / molar mass solute × kg solvent
b = 30.0 g / (58.44 g/mol) × 3.75 kg = 0.137 m
- Step 2: Calculate the boiling-point elevation.
We will use the following expression.
ΔT = Kb × m × i
ΔT = 0.512 °C/m × 0.137 m × 2 = 0.140 °C
where
- ΔT is the boiling-point elevation
- Kb is the ebullioscopic constant.
- b is the molality.
- i is the Van't Hoff factor (i = 2 for NaCl).
The normal boiling-point for water is 100 °C. The boiling-point of the solution will be:
100 °C + 0.140 °C = 100.14 °C
Assuming an ebullioscopic constant of 0.512 °C/m for the water, If you add 30.0g of salt to 3.75kg of water, the boiling-point elevation will be 0.140 °C and the boiling-point of the solution will be 100.14 °C.
Learn more about boiling-point elevation here: brainly.com/question/4206205