Answer:
3.72 mol Hg
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Density = Mass over Volume
Explanation:
<u>Step 1: Define</u>
D = 13.6 g/mL
54.8 mL Hg
<u>Step 2: Identify Conversions</u>
Molar Mass of Hg - 200.59 g/mol
<u>Step 3: Find</u>
13.6 g/mL = x g / 54.8 mL
x = 745.28 g Hg
<u>Step 4: Convert</u>
<u />
= 3.71544 mol Hg
<u>Step 5: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
3.71544 mol Hg ≈ 3.72 mol Hg
Answer:
A. The rate of heat transfer through the material would increase.
Explanation:
To calculate the heat transfer in a heat exchanger you decide that there is not heat leakage to the surroundings, that means that magnitude of the two transfer rates will be equal. Any heat lost by the hot fluid, is gained by the cold fluid. The equation that describes this is Q = m×Cp×dT
Where:
heat = mass flow ×specific heat capacity × temperature difference
So if we increase the rate of flow of cooling water and the other variables that ypu can control remain the same, the result is that the rate of heat transfer through the material would increase, as it is stated in option a.
It’s called an ion . An atom that loses electron is called an ion
Answer:
At 0.58 L of 0.540 M NaOH solution contain 12.5 g NaOH.
Explanation:
Given data:
At volume = ?
Mass of NaOH = 12.5 g
Molarity of solution = 0.540 M
Solution:
First of all we will calculate the number of moles of sodium hydroxide.
Number of moles = mass/molar mass
Number of moles = 12.5 g / 40 g/mol
Number of moles = 0.3125 mol
Volume of NaOH:
Molarity = number of moles / volume in L
Now we will put the values.
0.540 M = 0.3125 mol / volume in L
volume in L = 0.3125 mol / 0.540 mol/L
volume in L = 0.58 L
Explanation:
Moving from left to right across a period, the atomic radius decreases. The nucleus of the atom gains protons moving from left to right, increasing the positive charge of the nucleus and increasing the attractive force of the nucleus upon the electrons.