<span>The number of electrons in an atom's outermost valence shell governs its bonding behavior.
In N</span>₂, three electrons are being shared by each nitrogen atom, making a total of 6 shared electrons.
In CCl₄, 4 electrons are being shared by each carbon atom and 1 electron is being shared by each chlorine atom
In SiO₂, 4 electrons are being shared by each silicon atom and 2 electrons are being shared by each oxygen atom.
In AlCl₃, 3 electrons are being shared by each aluminum atom and 1 electron is being shared by each Cl atom
In CaCl₂, 2 electrons are lost by the calcium atom and 1 electron is gained by each chlorine atom
In LiBr, 1 electron is lost by the lithium atom and 1 electron is gained by the bromine atom
830 mL. A 2.3 mol/L solution of CaCl2 has a volume of 830 mL
I am guessing that the concentration of your solution is 2.3 mol/L.
a) Moles of CaCl2
MM of CaCl2 = 110.98 g/mol
Moles of CaCl2 = 212 g CaCl2 x (1 mol CaCl2/110.98 g CaCl2)
= 1.910 mol CaCl2
b) Volume of solution
V = 1.910 mol CaCl2 x (1 L solution/2.3 mol CaCl2) = 0.83 L solution
= 830 mL solution
Answer:
C is the answer to the question
Any buffer exists in this equilibrium
HA <=>

In a buffer, there is a large reservoir of both the undissociated acid (HA) and its conjugate base (

)
When a strong acid is added, it reacts with the large reservoir of the conjugate base (

) forming a salt and water. Since this large reservoir of the conjugate base is used, the ph does not alter drastically, but instead resist the pH change.
Answer:
There are 0,89 moles of nitrous oxide gas in the balloon.
Explanation:
We apply the formula of the ideal gases, we clear n (number of moles); we use the ideal gas constant R = 0.082 l atm / K mol:
PV= nRT ---> n= PV/RT
n= 1,09 atm x 20,0 L /0.082 l atm / K mol x 298 K
<em>n= 0,89212637 mol</em>