Answer:
B. An electric current into a magnetic field
Explanation:
The generation of electrical power requires relative motion between a magnetic field and a conductor. In a generator, mechanical energy is converted into electrical energy. The electricity produced by most generators is in the form of alternating current.
Answer:
The right solution is "24.39 per sec".
Explanation:
According to the question,
⇒ 

The time will be:
⇒ 



hence,
⇒ 

Relative motion means a motion relative to a reference point. We can also say, relative motion means motion referred or observed from a reference point.
For example, Alex is in a train and Ace is at the station, when the train starts moving, for Ace it is moving at a speed of 10 m/s, but for Alex it is moving at 0 m/s, or we can say that it is at rest for Alex, but in motion for Ace. This is relative motion.
Density = (mass) / (volume)
4,000 kg/m³ = (mass) / (0.09 m³)
Multiply each side
by 0.09 m³ : (4,000 kg/m³) x (0.09 m³) = mass
mass = 360 kg .
Force of gravity = (mass) x (acceleration of gravity)
= (360 kg) x (9.8 m/s²)
= (360 x 9.8) kg-m/s²
= 3,528 newtons .
That's the force of gravity on this block, and it doesn't matter
what else is around it. It could be in a box on the shelf or at
the bottom of a swimming pool . . . it's weight is 3,528 newtons
(about 793.7 pounds).
Now, it won't seem that heavy when it's in the water, because
there's another force acting on it in the upward direction, against
gravity. That's the buoyant force due to the displaced water.
The block is displacing 0.09 m³ of water. Water has 1,000 kg of
mass in a m³, so the block displaces 90 kg of water. The weight
of that water is (90) x (9.8) = 882 newtons (about 198.4 pounds),
and that force tries to hold the block up, against gravity.
So while it's in the water, the block seems to weigh
(3,528 - 882) = 2,646 newtons (about 595.2 pounds) .
But again ... it's not correct to call that the "force of gravity acting
on the block in water". The force of gravity doesn't change, but
there's another force, working against gravity, in the water.