In order to answer this exercise you need to use the formulas
S = Vo*t + (1/2)*a*t^2
Vf = Vo + at
The data will be given as
Vf = final velocity = ?
Vo = initial velocity = 1.4 m/s
a = acceleration = 0.20 m/s^2
s = displacement = 100m
And now you do the following:
100 = 1.4t + (1/2)*0.2*t^2
t = 25.388s
and
Vf = 1.4 + 0.2(25.388)
Vf = 6.5 m/s
So the answer you are looking for is 6.5 m/s
<span>coefficient
Let's look at the 3 possibilities and see what they are for </span>3H₂O₂ coefficient - This is used to indicate that multiple molecules are used for the formula. In 3H₂O₂ that indicates that we are talking about 3 molecules of H₂O₂ subscript - This is a small number set in a smaller font and placed low to the elements. It indicates the number of each type of atom in the compound. For the formula 3H₂O₂ there are 2 subscripts. Both of them being the number "2" set small and low just after the letters H and O. Those subscripts indicate that there are 2 hydrogen and 2 oxygen atoms per molecule.
element - This is the abbreviation for the elements used in the compound. In <span>3H₂O₂</span> there are 2 different elements. H to indicate hydrogen, and O to indicate oxygen.
X=r-p. Maybe I don't understand, but I am assuming that you need to isolate for X? you simply subtract p from both sides.<span />
Explanation:
This difference is because of the difference in arrangement of carbon atoms both graphite and Diamond.
Carbon atoms in graphite are arranged in layered form in an infinite array of layers. These layers are held together by a weaker force of attraction called vander waal's force of attraction such that layer's can slip over one another. Whereas in diamond carbon atoms are arranged tetrahedrally. Each carbon atom is attached to four carbon atoms with a bond angle of 109.5°. It is strong rigid three dimensional structure that results in infinite array atoms. This accounts for hardness of the diamond.