Because: Some of the work done by the machine is used to overcome the friction created by the use of the machine. ... Work output can never be greater than work input. Machines allow force to be applied over a greater distance, which means that less force will be needed for the same amount of work.
Add all the resistances across the circuit together the calculate the total resistance
The broom handle that she have to balance if she hung a 400g mass from the end of the broom handle is 5.24m
This problem is centered on moment. Moment is the turning effect of a force about a point. It is expressed as:
Moment = Force× Distance
According to principle of moment, the sum of clockwise moment is equal to sum of anticlockwise moment at shown
M1d1 = M2d2
Given the following
M1 = 1.5kg
d1 = 1.4m
M2 = 400g = 0.4kg
d2 is required
Substitute
1.5(1.4) = 0.4d2
2.1 = 0.4d2
d2 = 2.1/0.4
d2 = 5.24m
Hence the broom handle that she have to if she hung a 400g mass from the end of the broom handle is 5.24m
Learn more here: brainly.com/question/21945515
Complete question:
The exit nozzle in a jet engine receives air at 1200 K, 150 kPa with negligible kinetic energy. The exit pressure is 80 kPa, and the process is reversible and adiabatic. Use constant specific heat at 300 K to find the exit velocity.
Answer:
The exit velocity is 629.41 m/s
Explanation:
Given;
initial temperature, T₁ = 1200K
initial pressure, P₁ = 150 kPa
final pressure, P₂ = 80 kPa
specific heat at 300 K, Cp = 1004 J/kgK
k = 1.4
Calculate final temperature;

k = 1.4

Work done is given as;

inlet velocity is negligible;

Therefore, the exit velocity is 629.41 m/s