Answer:
Answer is explained in the explanation section below.
Explanation:
This question is very basic and easy. The answer to this question is:
Answer: If both batteries are connected we would get less amount of charge as compared to connected a single battery.
Reasoning:
If both batteries are connected in a manner of positive terminal to positive terminal and negative terminal to negative terminal then a capacitor is added to charge it from the batteries then, total electromotive force (emf) would decrease.
As a result, the capacitor added would get less amount of charge stored. But capacitor added will get more amount of charge stored when a single battery is connected.
The new oscillation frequency of the pendulum clock is 1.14 rad/s.
The given parameters;
- <em>Mass of the pendulum, = M </em>
- <em>Length of the pendulum, = L</em>
- <em>Initial angular speed, </em>
<em> = 1 rad/s</em>
The moment of inertia of the rod about the end is given as;

The moment of inertia of the rod between the middle and the end is calculated as;
![I_f = \int\limits^L_{L/2} {r^2\frac{M}{L} } \, dr = \frac{M}{3L} [r^3]^L_{L/2} = \frac{M}{3L} [L^3 - \frac{L^3}{8} ] = \frac{M}{3L} [\frac{7L^3}{8} ]= \frac{7ML^2}{24}](https://tex.z-dn.net/?f=I_f%20%3D%20%5Cint%5Climits%5EL_%7BL%2F2%7D%20%7Br%5E2%5Cfrac%7BM%7D%7BL%7D%20%7D%20%5C%2C%20dr%20%3D%20%5Cfrac%7BM%7D%7B3L%7D%20%5Br%5E3%5D%5EL_%7BL%2F2%7D%20%3D%20%20%5Cfrac%7BM%7D%7B3L%7D%20%5BL%5E3%20-%20%5Cfrac%7BL%5E3%7D%7B8%7D%20%5D%20%3D%20%5Cfrac%7BM%7D%7B3L%7D%20%5B%5Cfrac%7B7L%5E3%7D%7B8%7D%20%5D%3D%20%5Cfrac%7B7ML%5E2%7D%7B24%7D)
Apply the principle of conservation of angular momentum as shown below;

Thus, the new oscillation frequency of the pendulum clock is 1.14 rad/s.
Learn more about moment of inertia of uniform rod here: brainly.com/question/15648129
Observer A is moving inside the train
so here observer A will not be able to see the change in position of train as he is standing in the same reference frame
So here as per observer A the train will remain at rest and its not moving at all
Observer B is standing on the platform so here it is a stationary reference frame which is outside the moving body
So here observer B will see the actual motion of train which is moving in forward direction away from the platform
Observer C is inside other train which is moving in opposite direction on parallel track. So as per observer C the train is coming nearer to him at faster speed then the actual speed because they are moving in opposite direction
So the distance between them will decrease at faster rate
Now as per Newton's II law
F = ma
Now if train apply the brakes the net force on it will be opposite to its motion
So we can say
- F = ma

so here acceleration negative will show that train will get slower and its distance with respect to us is now increasing with less rate
It is not affected by the gravity because the gravity will cause the weight of train and this weight is always counterbalanced by normal force on the train
So there is no effect on train motion
The answer is A. Or the first option. Pressure is changed by lowering the pressure, not reducing the volume. You would assume its C but its A.