1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gwar [14]
3 years ago
13

If air resistance can be neglected, how does the acceleration of a ball that has been tossed straight upward compare with its ac

celeration if simply dropped?
Physics
1 answer:
timama [110]3 years ago
6 0
They are the same. If this is all happening on Earth, then the ball's acceleration is 9.8 m/s^2 in either case. That's the acceleration of gravity around here.
You might be interested in
Write a main idea statement about the nervous system.
Alisiya [41]

Answer:

The nervous system is the major controlling, regulatory, and communicating system in the body. It is the center of all mental activity including thought, learning, and memory. Together with the endocrine system, the nervous system is responsible for regulating and maintaining homeostasis.

Explanation:

6 0
3 years ago
Read 2 more answers
A manometer is used to measure the air pressure in a tank. the fluid used has a specific gravity of 1.25, and the differential h
BartSMP [9]
Specific Gravity of the fluid = 1.25 
Height h = 28 in
 Atmospheric Pressure = 12.7 psia
 Density of water = 62.4 lbm/ft^3 at 32F
 Density of the Fluid = Specific Gravity of the fluid x Density of water = 1.25 x 62.4
 Density of the Fluid p = 78 lbm/ft^3
 Difference in pressure as we got the differential height, dP = p x g x h  dP = (78 lbm/ft^3) x (32.174 ft/s^2) x (28/12 ft) [ 1 lbf / 32.174 ft/s^2] [1 ft^2 /
144in^2]
 Difference in pressure = 1.26 psia
 (a) Pressure in the arm that is at Higher 
 P = Atmospheric Pressure - Pressure difference = 12.7 - 1.26 = 11.44 psia
 (b) Pressure in the tank that is at Lower
 P = Atmospheric Pressure + Pressure difference = 12.7 + 1.26 = 13.96psia
4 0
3 years ago
How is the electrostatic force affected when the magnitude of a charge is doubled?
BaLLatris [955]
The magnitude of the electrostatic force between two charges is given by:
F=k_e  \frac{q_1 q_2}{r^2}
where
ke is the Coulomb's constant
q1 and q2 are the two charges
r is the separation between the two charges

We can see that the magnitude of the force is directly proportional to the charges. This means that when one of the charges is doubled, the magnitude of the electrostatic force will double as well, so the correct answer is
A) <span>The magnitude of the electrostatic force doubles</span>
4 0
3 years ago
A small rock is thrown straight up with initial speed v0 from the edge of the roof of a building with height H. The rock travels
Crank

Answer:

v_{avg}=\dfrac{3gH+v_0^2}{v_0+\sqrt{v_0^2+2gH} }

Explanation:

The average velocity is total displacement divided by time:

v_{avg} =\dfrac{D_{tot}}{t}

And in the case of vertical v_{avg}

v_{avg}=\dfrac{y_{tot}}{t}

where y_{tot} is the total vertical displacement of the rock.

The vertical displacement of the rock when it is thrown straight up from height H with initial velocity v_0 is given by:

y=H+v_0t-\dfrac{1}{2} gt^2

The time it takes for the rock to reach maximum height is when y'(t)=0, and it is

t=\frac{v_0}{g}

The vertical distance it would have traveled in that time is

y=H+v_0(\dfrac{v_0}{g} )-\dfrac{1}{2} g(\dfrac{v_0}{g} )^2

y_{max}=\dfrac{2gH+v_0^2}{2g}

This is the maximum height the rock reaches, and after it has reached this height the rock the starts moving downwards and eventually reaches the ground. The distance it would have traveled then would be:

y_{down}=\dfrac{2gH+v_0^2}{2g}+H

Therefore, the total displacement throughout the rock's journey is

y_{tot}=y_{max}+y_{down}

y_{tot} =\dfrac{2gH+v_0^2}{2g}+\dfrac{2gH+v_0^2}{2g}+H

\boxed{y_{tot} =\dfrac{2gH+v_0^2}{g}+H}

Now wee need to figure out the time of the journey.

We already know that the rock reaches the maximum height at

t=\dfrac{v_0}{g},

and it should take the rock the same amount of time to return to the roof, and it takes another t_0 to go from the roof of the building to the ground; therefore,

t_{tot}=2\dfrac{v_0}{g}+t_0

where t_0 is the time it takes the rock to go from the roof of the building to the ground, and it is given by

H=v_0t_0+\dfrac{1}{2}gt_0^2

we solve for t_0 using the quadratic formula and take the positive value to get:

t_0=\dfrac{-v_0+\sqrt{v_0^2+2gH}  }{g}

Therefore the total time is

t_{tot}= 2\dfrac{v_0}{g}+\dfrac{-v_0+\sqrt{v_0^2+2gH}  }{g}

\boxed{t_{tot}= \dfrac{v_0+\sqrt{v_0^2+2gH}  }{g}}

Now the average velocity is

v_{avg}=\dfrac{y_{tot}}{t}

v_{avg}=\dfrac{\frac{2gH+v_0^2}{g}+H }{\frac{v_0+\sqrt{v_0^2+2gH} }{g} }

\boxed{v_{avg}=\dfrac{3gH+v_0^2}{v_0+\sqrt{v_0^2+2gH} } }

5 0
3 years ago
Holding onto a tow rope moving parallel to a frictionless ski slope, a 68.7 kg skier is pulled up the slope, which is at an angl
Furkat [3]

Answer:

a) F = 78.606\,N, b) F = 88.911\,N

Explanation:

a) Let consider two equations of equilibrium, the first parallel to ski slope and the second perpendicular to that. The equations are, respectively:

\Sigma F_{x'} = F - m\cdot g \cdot \sin \theta = 0\\\Sigma F_{y'} = N - m\cdot g \cdot \cos \theta = 0

The force on the skier is:

F = m \cdot g \cdot \sin \theta

F = (68.7\,kg)\cdot (9.807\,\frac{m}{s^{2}} )\cdot \sin 6.7^{\textdegree}

F = 78.606\,N

b) The equations of equilibrium are the following:

\Sigma F_{x'} = F - m\cdot g \cdot \sin \theta = m\cdot a\\\Sigma F_{y'} = N - m\cdot g \cdot \cos \theta = 0

The force on the skier is:

F = m\cdot (a + g \cdot \sin \theta)

F = (68.7\,kg)\cdot (0.150\,\frac{m}{s^{2}}+9.807\,\frac{m}{s^{2}}\cdot \sin 6.7^{\textdegree})

F = 88.911\,N

3 0
3 years ago
Other questions:
  • A mining crew extracted two different types of minerals from underground. Then, they transferred the same amount of energy into
    11·2 answers
  • 9. An astronaut of mass 90 kg walks in space outside her spaceship and receives a 30-N force from a nitrogen spurt gun. What acc
    15·2 answers
  • How does the planet Venus look to a person standing on the Earth?
    14·1 answer
  • A weather balloon is inflated to a volume of 27.6 l at a pressure of 736 mmhg and a temperature of 26.1 âc. the balloon rises in
    11·1 answer
  • A hockey player makes a slap shot exerting a constant force of 40.0 newtons on the puck for .2 seconds. What is the magnitude of
    10·1 answer
  • Consider the free body diagram. If the sum of the tension forces is equal to the force of gravity, which description BEST appli
    12·2 answers
  • The volume of a gas is directly related to the temperature of the gas. at 30 degrees celsius a certain gas has a volume of 125 c
    5·2 answers
  • Elements in the same group/familly of the periodic table are similar in what way
    13·1 answer
  • A resistor R and a capacitor C are connected in series to a battery of terminal voltage V0. Which of the following equations rel
    7·1 answer
  • Sorry that i ask for too much but I'm horrible at this ⭐-_-
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!